Articles | Volume 16, issue 10
Research article
27 May 2016
Research article |  | 27 May 2016

Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

Karoliina Ignatius, Thomas B. Kristensen, Emma Järvinen, Leonid Nichman, Claudia Fuchs, Hamish Gordon, Paul Herenz, Christopher R. Hoyle, Jonathan Duplissy, Sarvesh Garimella, Antonio Dias, Carla Frege, Niko Höppel, Jasmin Tröstl, Robert Wagner, Chao Yan, Antonio Amorim, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Martin W. Gallagher, Jasper Kirkby, Markku Kulmala, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Antonio Tomé, Annele Virtanen, Douglas Worsnop, and Frank Stratmann


Total article views: 5,472 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
3,984 1,319 169 5,472 292 126 137
  • HTML: 3,984
  • PDF: 1,319
  • XML: 169
  • Total: 5,472
  • Supplement: 292
  • BibTeX: 126
  • EndNote: 137
Views and downloads (calculated since 18 Dec 2015)
Cumulative views and downloads (calculated since 18 Dec 2015)


Saved (preprint)

Discussed (final revised paper)

Latest update: 18 Jul 2024
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Final-revised paper