Articles | Volume 16, issue 10
Atmos. Chem. Phys., 16, 6495–6509, 2016
https://doi.org/10.5194/acp-16-6495-2016

Special issue: The CERN CLOUD experiment (ACP/AMT inter-journal SI)

Atmos. Chem. Phys., 16, 6495–6509, 2016
https://doi.org/10.5194/acp-16-6495-2016

Research article 27 May 2016

Research article | 27 May 2016

Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

Karoliina Ignatius et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Karoliina Ignatius on behalf of the Authors (16 Apr 2016)  Author's response
ED: Referee Nomination & Report Request started (19 Apr 2016) by Hinrich Grothe
RR by Anonymous Referee #2 (02 May 2016)
RR by Anonymous Referee #1 (09 May 2016)
ED: Publish subject to technical corrections (09 May 2016) by Hinrich Grothe
Download
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Altmetrics
Final-revised paper
Preprint