Articles | Volume 16, issue 24
https://doi.org/10.5194/acp-16-15629-2016
https://doi.org/10.5194/acp-16-15629-2016
Research article
 | 
20 Dec 2016
Research article |  | 20 Dec 2016

Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data

Ioannis Kioutsioukis, Ulas Im, Efisio Solazzo, Roberto Bianconi, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Oriol Jorba, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guidio Pirovano, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Christian Hogrefe, and Stefano Galmarini

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Stefano Galmarini on behalf of the Authors (14 Oct 2016)  Manuscript 
ED: Publish as is (01 Dec 2016) by Gregory Carmichael
AR by Stefano Galmarini on behalf of the Authors (05 Dec 2016)
Download
Short summary
Four ensemble methods are applied to two annual AQMEII datasets and their performance is compared for O3, NO2 and PM10. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill at each station over the single models and the ensemble mean. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way.
Altmetrics
Final-revised paper
Preprint