Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1377-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-16-1377-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain
V. Maurer
CORRESPONDING AUTHOR
Institut für Meteorologie und Klimaforschung (IMK-TRO), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
N. Kalthoff
Institut für Meteorologie und Klimaforschung (IMK-TRO), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
A. Wieser
Institut für Meteorologie und Klimaforschung (IMK-TRO), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
M. Kohler
Institut für Meteorologie und Klimaforschung (IMK-TRO), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
M. Mauder
Institut für Meteorologie und Klimaforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Garmisch-Partenkirchen, Germany
L. Gantner
Institut für Meteorologie und Klimaforschung (IMK-TRO), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
Viewed
Total article views: 3,572 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Jul 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,893 | 1,370 | 309 | 3,572 | 131 | 136 |
- HTML: 1,893
- PDF: 1,370
- XML: 309
- Total: 3,572
- BibTeX: 131
- EndNote: 136
Total article views: 2,830 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Feb 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,585 | 1,019 | 226 | 2,830 | 89 | 93 |
- HTML: 1,585
- PDF: 1,019
- XML: 226
- Total: 2,830
- BibTeX: 89
- EndNote: 93
Total article views: 742 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Jul 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
308 | 351 | 83 | 742 | 42 | 43 |
- HTML: 308
- PDF: 351
- XML: 83
- Total: 742
- BibTeX: 42
- EndNote: 43
Cited
17 citations as recorded by crossref.
- The Impact of Land-Surface Parameter Properties and Resolution on the Simulated Cloud-Topped Atmospheric Boundary Layer L. Gantner et al. 10.1007/s10546-017-0286-6
- Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign N. Wildmann et al. 10.5194/amt-12-6401-2019
- Evaluation of turbulence measurement techniques from a single Doppler lidar T. Bonin et al. 10.5194/amt-10-3021-2017
- Atmospheric transport over open-pit mines: The effects of thermal stability and mine depth S. Kia et al. 10.1016/j.jweia.2021.104677
- Integrated Validation of Coarse Remotely Sensed Evapotranspiration Products over Heterogeneous Land Surfaces Y. Zhang et al. 10.3390/rs14143467
- Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer N. Dewani et al. 10.5194/acp-23-4045-2023
- An Improved Double-Gaussian Closure for the Subgrid Vertical Velocity Probability Distribution Function A. Fitch 10.1175/JAS-D-18-0149.1
- Comparison of Convective Boundary Layer Characteristics from Aircraft and Wind Lidar Observations B. Adler et al. 10.1175/JTECH-D-18-0118.1
- The HD(CP)<sup>2</sup> Observational Prototype Experiment (HOPE) – an overview A. Macke et al. 10.5194/acp-17-4887-2017
- Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign R. Heinze et al. 10.5194/acp-17-7083-2017
- Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer V. Wulfmeyer et al. 10.5194/amt-17-1175-2024
- Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer L. Berg et al. 10.1175/JAMC-D-16-0359.1
- Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements H. Baars et al. 10.5194/amt-10-3175-2017
- Mean wind vector estimation using the velocity–azimuth display (VAD) method: an explicit algebraic solution G. Teschke & V. Lehmann 10.5194/amt-10-3265-2017
- Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer A. Foth & B. Pospichal 10.5194/amt-10-3325-2017
- Quantifying the Impact of Subsurface‐Land Surface Physical Processes on the Predictive Skill of Subseasonal Mesoscale Atmospheric Simulations M. Sulis et al. 10.1029/2017JD028187
- Observation of sensible and latent heat flux profiles with lidar A. Behrendt et al. 10.5194/amt-13-3221-2020
17 citations as recorded by crossref.
- The Impact of Land-Surface Parameter Properties and Resolution on the Simulated Cloud-Topped Atmospheric Boundary Layer L. Gantner et al. 10.1007/s10546-017-0286-6
- Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign N. Wildmann et al. 10.5194/amt-12-6401-2019
- Evaluation of turbulence measurement techniques from a single Doppler lidar T. Bonin et al. 10.5194/amt-10-3021-2017
- Atmospheric transport over open-pit mines: The effects of thermal stability and mine depth S. Kia et al. 10.1016/j.jweia.2021.104677
- Integrated Validation of Coarse Remotely Sensed Evapotranspiration Products over Heterogeneous Land Surfaces Y. Zhang et al. 10.3390/rs14143467
- Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer N. Dewani et al. 10.5194/acp-23-4045-2023
- An Improved Double-Gaussian Closure for the Subgrid Vertical Velocity Probability Distribution Function A. Fitch 10.1175/JAS-D-18-0149.1
- Comparison of Convective Boundary Layer Characteristics from Aircraft and Wind Lidar Observations B. Adler et al. 10.1175/JTECH-D-18-0118.1
- The HD(CP)<sup>2</sup> Observational Prototype Experiment (HOPE) – an overview A. Macke et al. 10.5194/acp-17-4887-2017
- Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign R. Heinze et al. 10.5194/acp-17-7083-2017
- Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer V. Wulfmeyer et al. 10.5194/amt-17-1175-2024
- Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer L. Berg et al. 10.1175/JAMC-D-16-0359.1
- Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements H. Baars et al. 10.5194/amt-10-3175-2017
- Mean wind vector estimation using the velocity–azimuth display (VAD) method: an explicit algebraic solution G. Teschke & V. Lehmann 10.5194/amt-10-3265-2017
- Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer A. Foth & B. Pospichal 10.5194/amt-10-3325-2017
- Quantifying the Impact of Subsurface‐Land Surface Physical Processes on the Predictive Skill of Subseasonal Mesoscale Atmospheric Simulations M. Sulis et al. 10.1029/2017JD028187
- Observation of sensible and latent heat flux profiles with lidar A. Behrendt et al. 10.5194/amt-13-3221-2020
Saved (preprint)
Latest update: 21 Nov 2024
Short summary
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our understanding of boundary-layer processes. We compared turbulence profiles measured at three locations lying about 3 km apart and found that the deployment of the instruments in different crop fields has no direct influence on turbulence statistics on cloud-free days. Nevertheless, spatial differences as well as correlations were found, indicating the existence of organized structures of turbulence.
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our...
Special issue
Altmetrics
Final-revised paper
Preprint