Articles | Volume 16, issue 21
https://doi.org/10.5194/acp-16-13477-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-13477-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Daniel J. Jacob
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA
Patrick S. Kim
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA
Jenny A. Fisher
Centre for Atmospheric Chemistry, School of Chemistry, University of
Wollongong, Wollongong, NSW, Australia
School of Earth and Environmental Sciences, University of Wollongong,
Wollongong, NSW, Australia
Karen Yu
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Katherine R. Travis
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Loretta J. Mickley
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Robert M. Yantosca
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Melissa P. Sulprizio
John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA
Isabelle De Smedt
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Gonzalo González Abad
Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
Kelly Chance
Harvard–Smithsonian Center for Astrophysics, Cambridge, MA, USA
Earth System Science Interdisciplinary Center, University of Maryland,
College Park, Maryland, USA
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Richard Ferrare
NASA Langley Research Center, Hampton, VA 23681, USA
Alan Fried
Institute of Arctic and Alpine Research, University of Colorado, Boulder,
CO, USA
Johnathan W. Hair
NASA Langley Research Center, Hampton, VA 23681, USA
Thomas F. Hanisco
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Dirk Richter
Institute of Arctic and Alpine Research, University of Colorado, Boulder,
CO, USA
Amy Jo Scarino
Science Systems and Applications, Inc., Hampton, VA, USA
James Walega
Institute of Arctic and Alpine Research, University of Colorado, Boulder,
CO, USA
Petter Weibring
Institute of Arctic and Alpine Research, University of Colorado, Boulder,
CO, USA
Glenn M. Wolfe
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Joint Center for Earth Systems Technology, University of Maryland
Baltimore County, Baltimore, Maryland, USA
Data sets
SEAC4RS data NASA http://www-air.larc.nasa.gov/missions/seac4rs/
OMI-SAO data NASA http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omhcho_v003.shtml
GOME2A-BIRA and GOME2B-BIRA data TEMIS http://h2co.aeronomie.be
Short summary
HCHO column data are widely used as a proxy for VOCs emissions, but validation of the data has been extremely limited. We use accurate aircraft observations to validate and intercompare 6 HCHO retrievals with GEOS-Chem as the intercomparison platform. Retrievals are interconsistent in spatial variability over the SE US and in daily variability, but are biased low by 20–51 %. Our work supports the use of HCHO column as a quantitative proxy for isoprene emission after correction of the low bias.
HCHO column data are widely used as a proxy for VOCs emissions, but validation of the data has...
Altmetrics
Final-revised paper
Preprint