Articles | Volume 16, issue 18
https://doi.org/10.5194/acp-16-12239-2016
https://doi.org/10.5194/acp-16-12239-2016
Research article
 | 
29 Sep 2016
Research article |  | 29 Sep 2016

Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem

Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Tomás Sherwen on behalf of the Authors (12 Sep 2016)  Author's response   Manuscript 
ED: Publish subject to technical corrections (16 Sep 2016) by Rolf Sander
AR by Tomás Sherwen on behalf of the Authors (16 Sep 2016)  Author's response   Manuscript 
Download
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
Altmetrics
Final-revised paper
Preprint