Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 18
Atmos. Chem. Phys., 16, 11601–11615, 2016
https://doi.org/10.5194/acp-16-11601-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 11601–11615, 2016
https://doi.org/10.5194/acp-16-11601-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Sep 2016

Research article | 20 Sep 2016

The influence of temperature on ozone production under varying NOx conditions – a modelling study

Jane Coates et al.

Viewed

Total article views: 2,281 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,124 1,095 62 2,281 188 59 68
  • HTML: 1,124
  • PDF: 1,095
  • XML: 62
  • Total: 2,281
  • Supplement: 188
  • BibTeX: 59
  • EndNote: 68
Views and downloads (calculated since 09 May 2016)
Cumulative views and downloads (calculated since 09 May 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 05 Aug 2020
Publications Copernicus
Download
Short summary
This modelling study reproduced the non-linear relationship of ozone, NOx and temperature using various chemical mechanisms previously determined from observational studies. Under urban conditions, faster reaction rates rather than increased isoprene emissions led to a slightly greater increase of ozone with temperature using different NOx conditions. This study also shows that the increase of ozone with temperature is more sensitive to atmospheric mixing than the choice of chemical mechanism.
This modelling study reproduced the non-linear relationship of ozone, NOx and temperature using...
Citation
Final-revised paper
Preprint