Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-1105-2016
https://doi.org/10.5194/acp-16-1105-2016
Research article
 | 
01 Feb 2016
Research article |  | 01 Feb 2016

Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA)

D. F. Zhao, A. Buchholz, B. Kortner, P. Schlag, F. Rubach, H. Fuchs, A. Kiendler-Scharr, R. Tillmann, A. Wahner, Å. K. Watne, M. Hallquist, J. M. Flores, Y. Rudich, K. Kristensen, A. M. K. Hansen, M. Glasius, I. Kourtchev, M. Kalberer, and Th. F. Mentel

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Defeng Zhao on behalf of the Authors (01 Jan 2016)  Author's response   Manuscript 
ED: Publish as is (17 Jan 2016) by Hang Su
AR by Defeng Zhao on behalf of the Authors (18 Jan 2016)
Download
Short summary
This study investigated the cloud droplet activation behavior and hygroscopic growth of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Cloud droplet activation behaviors of different types of SOA were similar. In contrast, the hygroscopicity of ASOA was higher than BSOA and ABSOA. ASOA components enhanced the hygroscopicity of the ABSOA. Yet this enhancement cannot be described by a linear mixing of pure SOA systems.
Altmetrics
Final-revised paper
Preprint