Research article
18 Aug 2016
Research article
| 18 Aug 2016
A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts
Anna Agustí-Panareda et al.
Viewed
Total article views: 3,266 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Jan 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,677 | 1,510 | 79 | 3,266 | 156 | 59 | 63 |
- HTML: 1,677
- PDF: 1,510
- XML: 79
- Total: 3,266
- Supplement: 156
- BibTeX: 59
- EndNote: 63
Total article views: 2,499 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Aug 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,286 | 1,142 | 71 | 2,499 | 156 | 51 | 55 |
- HTML: 1,286
- PDF: 1,142
- XML: 71
- Total: 2,499
- Supplement: 156
- BibTeX: 51
- EndNote: 55
Total article views: 767 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Jan 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
391 | 368 | 8 | 767 | 8 | 8 |
- HTML: 391
- PDF: 368
- XML: 8
- Total: 767
- BibTeX: 8
- EndNote: 8
Cited
14 citations as recorded by crossref.
- Short-term forecasting of regional biospheric CO<sub>2</sub> fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2) J. Chen et al. 10.5194/gmd-13-4091-2020
- Evaluating high-resolution forecasts of atmospheric CO and CO<sub>2</sub> from a global prediction system during KORUS-AQ field campaign W. Tang et al. 10.5194/acp-18-11007-2018
- An improved air mass factor calculation for nitrogen dioxide measurements from the Global Ozone Monitoring Experiment-2 (GOME-2) S. Liu et al. 10.5194/amt-13-755-2020
- Bias-correcting carbon fluxes derived from land-surface satellite data for retrospective and near-real-time assimilation systems B. Weir et al. 10.5194/acp-21-9609-2021
- Improving the inter-hemispheric gradient of total column atmospheric CO<sub>2</sub> and CH<sub>4</sub> in simulations with the ECMWF semi-Lagrangian atmospheric global model A. Agusti-Panareda et al. 10.5194/gmd-10-1-2017
- Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1) V. Huijnen et al. 10.5194/gmd-12-1725-2019
- Regional‐Scale, Sector‐Specific Evaluation of Global CO 2 Inversion Models Using Aircraft Data From the ACT‐America Project B. Gaudet et al. 10.1029/2020JD033623
- Representing model uncertainty for global atmospheric CO<sub>2</sub> flux inversions using ECMWF-IFS-46R1 J. McNorton et al. 10.5194/gmd-13-2297-2020
- Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review G. Balsamo et al. 10.3390/rs10122038
- Evaluation of Regional CO 2 Mole Fractions in the ECMWF CAMS Real‐Time Atmospheric Analysis and NOAA CarbonTracker Near‐Real‐Time Reanalysis With Airborne Observations From ACT‐America Field Campaigns H. Chen et al. 10.1029/2018JD029992
- Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño C. Stockwell et al. 10.5194/acp-16-11711-2016
- Toward reduced transport errors in a high resolution urban CO2 inversion system A. Deng et al. 10.1525/elementa.133
- ERA5-Land: a state-of-the-art global reanalysis dataset for land applications J. Muñoz-Sabater et al. 10.5194/essd-13-4349-2021
- Modelling CO<sub>2</sub> weather – why horizontal resolution matters A. Agustí-Panareda et al. 10.5194/acp-19-7347-2019
14 citations as recorded by crossref.
- Short-term forecasting of regional biospheric CO<sub>2</sub> fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2) J. Chen et al. 10.5194/gmd-13-4091-2020
- Evaluating high-resolution forecasts of atmospheric CO and CO<sub>2</sub> from a global prediction system during KORUS-AQ field campaign W. Tang et al. 10.5194/acp-18-11007-2018
- An improved air mass factor calculation for nitrogen dioxide measurements from the Global Ozone Monitoring Experiment-2 (GOME-2) S. Liu et al. 10.5194/amt-13-755-2020
- Bias-correcting carbon fluxes derived from land-surface satellite data for retrospective and near-real-time assimilation systems B. Weir et al. 10.5194/acp-21-9609-2021
- Improving the inter-hemispheric gradient of total column atmospheric CO<sub>2</sub> and CH<sub>4</sub> in simulations with the ECMWF semi-Lagrangian atmospheric global model A. Agusti-Panareda et al. 10.5194/gmd-10-1-2017
- Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1) V. Huijnen et al. 10.5194/gmd-12-1725-2019
- Regional‐Scale, Sector‐Specific Evaluation of Global CO 2 Inversion Models Using Aircraft Data From the ACT‐America Project B. Gaudet et al. 10.1029/2020JD033623
- Representing model uncertainty for global atmospheric CO<sub>2</sub> flux inversions using ECMWF-IFS-46R1 J. McNorton et al. 10.5194/gmd-13-2297-2020
- Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review G. Balsamo et al. 10.3390/rs10122038
- Evaluation of Regional CO 2 Mole Fractions in the ECMWF CAMS Real‐Time Atmospheric Analysis and NOAA CarbonTracker Near‐Real‐Time Reanalysis With Airborne Observations From ACT‐America Field Campaigns H. Chen et al. 10.1029/2018JD029992
- Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño C. Stockwell et al. 10.5194/acp-16-11711-2016
- Toward reduced transport errors in a high resolution urban CO2 inversion system A. Deng et al. 10.1525/elementa.133
- ERA5-Land: a state-of-the-art global reanalysis dataset for land applications J. Muñoz-Sabater et al. 10.5194/essd-13-4349-2021
- Modelling CO<sub>2</sub> weather – why horizontal resolution matters A. Agustí-Panareda et al. 10.5194/acp-19-7347-2019
Latest update: 28 Jan 2023
Short summary
This paper presents a method to adjust the sinks and sources of CO2 associated with land ecosystems within a global atmospheric CO2 forecasting system in order to reduce the errors in the forecast. This is done by combining information on (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, and (3) simulated fluxes from the model. Because the method is simple and flexible, it can easily run in real time as part of a forecasting system.
This paper presents a method to adjust the sinks and sources of CO2 associated with land...
Altmetrics
Final-revised paper
Preprint