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Abstract. Forecasting atmospheric CO2 daily at the global
scale with a good accuracy like it is done for the weather is a
challenging task. However, it is also one of the key areas of
development to bridge the gaps between weather, air quality
and climate models. The challenge stems from the fact that
atmospheric CO2 is largely controlled by the CO2 fluxes at
the surface, which are difficult to constrain with observations.
In particular, the biogenic fluxes simulated by land surface
models show skill in detecting synoptic and regional-scale
disturbances up to sub-seasonal time-scales, but they are sub-
ject to large seasonal and annual budget errors at global scale,
usually requiring a posteriori adjustment. This paper presents
a scheme to diagnose and mitigate model errors associated
with biogenic fluxes within an atmospheric CO2 forecasting
system. The scheme is an adaptive scaling procedure referred
to as a biogenic flux adjustment scheme (BFAS), and it can
be applied automatically in real time throughout the forecast.
The BFAS method generally improves the continental budget
of CO2 fluxes in the model by combining information from
three sources: (1) retrospective fluxes estimated by a global
flux inversion system, (2) land-use information, (3) simulated
fluxes from the model. The method is shown to produce en-
hanced skill in the daily CO2 10-day forecasts without requir-
ing continuous manual intervention. Therefore, it is particu-
larly suitable for near-real-time CO2 analysis and forecasting
systems.

1 Introduction

Earth-observing strategies focusing on carbon cycle system-
atic monitoring from satellites, flask and in situ networks
(Ciais et al., 2014; Denning et al., 2005) are leading to an
increasing number of near-real-time observations available
to systems such as those developed in the framework of the
European Union Copernicus Atmosphere Monitoring Ser-
vice (CAMS). CAMS uses the Numerical Weather Predic-
tion (NWP) Integrated Forecasting system for Composition
(C-IFS) of the European Centre for Medium range Weather
Forecasts (ECMWF) to produce near-real-time global atmo-
spheric composition analysis and forecasts, including CO2
(Agustí-Panareda et al., 2014) along with other environmen-
tal and climate relevant tracers (Flemming et al., 2009; Mor-
crette et al., 2009; Massart et al., 2014). The purpose of
the real-time CO2 analysis/forecasting system is to provide
timely products that can be used by the scientific community
among other users. For example, those working on new in-
struments, field experiments, satellite retrieval products, re-
gional models requiring boundary conditions, or planning
flight campaigns.

The present monitoring of global atmospheric CO2 re-
lies on observations of atmospheric CO2 from satellites –
e.g. Greenhouse Gases Observing Satellite (GOSAT, www.
gosat.nies.go.jp); Orbiting Carbon Observatory 2 (OCO-2,
http://oco.jpl.nasa.gov) – and flask and in situ networks –
e.g. National Oceanic and Atmospheric Administration Earth
System Research Laboratory (NOAA/ESRL, www.esrl.noaa.
gov/gmd); Integrated Carbon Observation System (ICOS,
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http://icos-atc.lsce.ipsl.fr); Environment Canada (www.ec.
gc.ca/mges-ghgm) – which are assimilated by global tracer
transport models to infer changes in atmospheric CO2 (e.g.
Massart et al., 2015) or by flux inversion systems (e.g. Peylin
et al., 2013) to estimate the large-scale surface fluxes of CO2.

The current C-IFS CO2 analysis is produced by assimi-
lating CO2 data retrieved from GOSAT by the University of
Bremen (Heymann et al., 2015), as well as all the meteoro-
logical data that is routinely assimilated in the operational
meteorological analysis at ECMWF. Massart et al. (2015)
have shown that the atmospheric data assimilation system
alone cannot completely remove the biases in the background
atmospheric CO2 associated with the accumulation of errors
in the CO2 fluxes from the model. This happens because cur-
rently the CO2 surface fluxes in the C-IFS data assimilation
system cannot be constrained by observations. The model bi-
ases in atmospheric CO2 also present a problem for the data
assimilation system because its optimization relies on the as-
sumption that both model and observations are unbiased. It is
therefore imperative to remove any large biases before assim-
ilating observations. In this paper, we present a method to re-
duce the atmospheric CO2 model biases by adjusting the CO2
surface fluxes in a near-real-time CO2 analysis/forecasting
system, such as the one used by C-IFS at ECMWF.

Many different methods already exists to adjust CO2
fluxes by using observations of atmospheric CO2 within flux
inversion systems (Rödenbeck et al., 2003; Gurney et al.,
2003; Peters et al., 2007). However, these are not all suit-
able for the C-IFS real-time monitoring system. Flux inver-
sion systems adjust the fluxes by either inferring the model
parameters in Carbon Cycle Data Assimilation Systems also
known as CCDAS (Rayner et al., 2005; Scholze et al., 2007;
Rayner et al., 2011), or the fluxes themselves (Houweling
et al., 2015). CCDAS has the advantage of working in prog-
nostic mode once the model parameters have been optimized.
Nevertheless, it can also be prone to aliasing information to
the wrong model parameter when the processes that con-
tribute to the variability of atmospheric CO2 are not properly
represented in the model or missing altogether. Estimating
directly the CO2 fluxes does not rely on the accurate rep-
resentation of complex/unknown processes in the CO2 flux
model, but the resulting optimized fluxes do not have predic-
tive skill. Both approaches generally use long data assimila-
tion windows of several weeks to years in order to be able to
constrain the global mass of CO2 by relying mainly on high
quality in situ flask and continuous observations which are
relatively sparse in time and space. This general requirement
for long assimilation windows is incompatible with the cur-
rent NWP framework (e.g. a 12 h window is currently used
in the C-IFS). In addition to that, the CO2 observations from
flask and most in situ stations used by these flux inversion
systems are not available in near-real time.

Considering all the aspects mentioned above, a biogenic
flux adjustment scheme (hereafter called BFAS) suitable for
the NWP framework is proposed which aims to combine

the best characteristics of both flux inversion approaches.
Namely, the mass constraint from the optimized fluxes is
used to correct the biases of the modelled CO2 fluxes while
keeping the predictive skill of the modelled fluxes at syn-
optic scales. The main objective of BFAS is to reduce the
large-scale biases of the background atmospheric CO2. This
should improve the representation of the atmospheric CO2
large-scale gradients, and thereby also lead to a better fore-
cast of atmospheric CO2 synoptic variability.

The details of the flux adjustment scheme are provided in
Sect. 2. Section 3 describes the C-IFS experiments done to
test the impact of BFAS on the atmospheric CO2 forecast.
From the experiments, different aspects of the flux adjust-
ment can be monitored (i.e. the scaling factors and the result-
ing budget) as shown in Sect. 4. The resulting atmospheric
CO2 forecast fit to observations after applying BFAS is pre-
sented in Sect. 5. The potential use of BFAS for model de-
velopment and the possibility of including BFAS in the data
assimilation system are discussed in Sect. 6. Finally, Sect. 7
gives a summary of the flux adjustment achievements and
possible developments for the future.

2 Methodology

Any atmospheric CO2 analysis/forecast system requires a
flux adjustment of some sort in order to constrain the bud-
get of sources/sinks a the surface and avoid the growth
of mean errors in the atmospheric background (Agustí-
Panareda et al., 2014). The scientific question addressed in
this paper is how to use the best information we have in near-
real time to adjust the fluxes in a way that reduces the bias of
the atmospheric CO2 in the model with the minimum deteri-
oration of the synoptic skill to predict day-to-day variability.

Agustí-Panareda et al. (2014) documented the configura-
tion of the CO2 forecasting system and showed that the large
biases in atmospheric CO2 are consistent with errors associ-
ated with the budget of CO2 surface fluxes, in particular the
net ecosystem exchange (NEE) modelled by the CTESSEL
carbon model (Boussetta et al., 2013) within the C-IFS.

There are three main reasons for modelling NEE fluxes
online as opposed to using offline fluxes such as optimized
fluxes from flux inversion systems directly in the model:
(i) the coupling of CO2 biogenic fluxes with the atmospheric
model can lead to improvements in both the understanding
of interactions between ecosystems and the evolution of CO2
in the atmospheric boundary layer (Lu et al., 2001; Moreira
et al., 2013) and the forecast skill of energy and water cycle
fluxes in NWP models (Boussetta et al., 2013); (ii) the use of
offline fluxes would entail a loss of information and the in-
troduction of topographical inconsistencies when downscal-
ing fluxes from low resolution (e.g. typically a few degrees
in optimized fluxes) to high resolution (e.g. currently 9 km
in ECMWF NWP model); (iii) the non-availability of these
offline fluxes in near-real time implies the interannual vari-
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ability of the NEE fluxes (Schaefer et al., 2002) cannot be
represented.

The challenge remains of how to reduce the large-scale
biases associated with the modelled fluxes in real time. Be-
cause these biogenic fluxes are modelled online, a one-off
scaling of the fluxes using a climatology of the annual global
budget (Nassar et al., 2010; Chen et al., 2013) or re-scaling
locally the NEE in order to get a better fit with the seasonal
cycle (Messerschmidt et al., 2013; Keppel-Aleks et al., 2012)
are not suitable methods, as we do not know the annual bud-
get of the model in real-time.

Optimized fluxes from flux inversion systems constitute
the best available estimate of the CO2 fluxes given the ob-
served variations of CO2 in the atmosphere at global scales.
Thus, they can provide a reference benchmark for the mod-
elled fluxes. The large-scale biases in the CO2 fluxes can be
diagnosed by computing the budget (i.e. integrated) differ-
ences between modelled fluxes and optimized fluxes over
continental and supra-synoptic spatial and temporal scales
(≥ 1000 km, 10 days). Working with budgets over scales be-
yond the synoptic scale allows the detection of large-scale bi-
ases without interfering with the synoptic skill of the model.

It is important to note that there are uncertainties and
limitations that should be considered when using optimized
fluxes. Optimized fluxes are computed with flux inversion
systems at low resolutions (∼ hundreds of km) compared
to the NWP resolution used for the CO2 forecasts (∼ tens
of km), and they are most reliable at continental and supra-
synoptic scales. Moreover, they have the limitation of not be-
ing available in near-real time, unlike the meteorological ob-
servations or CO2 satellite retrievals (Massart et al., 2015).
Because of that, a climatology of the optimized fluxes has to
be used as a reference.

Finally, optimized fluxes only provide information on
the total CO2 flux because flux inversion systems are not
able to attribute the CO2 variability to the different pro-
cesses controlling the fluxes, such as vegetation, anthro-
pogenic sources and fires. Generally, from all these fluxes,
the land CO2 fluxes from vegetation and soils in mod-
els are associated with high uncertainty (Le Quéré et al.,
2015). For this reason, the Global Carbon Project provides
the CO2 budget from land vegetation – also known as the
land sink – as a residual to close the carbon budget (see
www.globalcarbonproject.org/carbonbudget, Le Quéré et al.,
2015). Following the land sink residual approach, the opti-
mized NEE can be computed as the residual of optimized
fluxes by subtracting the other prescribed fluxes. A set of 10-
day mean budgets of this residual NEE from optimized fluxes
is then computed daily for different regions and vegetation
types over a period of 10 years to build the NEE climatology
that can be used as a reference. In order to account for the
inter-annual variability of NEE, the reference climatology is
also adjusted with an inter-annual variability factor obtained
from the model.

The flux adjustment scheme essentially estimates the bias
of the modelled NEE budget with respect to the reference
NEE budget for each region and vegetation type as a scaling
factor α:

α =
f O

fM , (1)

where f is the 10-day mean NEE budget computed daily
over a specific vegetation type and region, f O is the ref-
erence budget based on the MACC-13R1 optimized fluxes
(Chevallier et al., 2010), and fM is the budget of the mod-
elled fluxes. Figure 1 shows how the BFAS scheme interacts
with the model to produce the flux-corrected atmospheric
CO2 forecast. First of all, the uncorrected NEE fluxes from
the model are retrieved. Then their budget is compared with
the budget of the NEE climatology from the optimized fluxes
adjusted with the NEE anomaly from the model. The scheme
produces maps with scaling factors of the biogenic fluxes be-
fore the forecast run. Subsequently, these maps are then used
to scale the forecast of NEE. There are three major building
blocks required for the computation of these scaling factors:

– the computation of the NEE budget using temporal
and spatial aggregation criteria (e.g. 10 days, vegetation
types, different regions);

– a reference NEE data set used to diagnose the model
biases (e.g. optimized fluxes from global flux inversion
systems such as the MACC-13R1 data set from Cheval-
lier et al., 2010);

– the partition of the NEE adjustment into the two mod-
elled ecosystem fluxes that make up the NEE flux: i.e.
gross primary production (GPP) associated with photo-
synthesis and ecosystem respiration (Reco) documented
by Boussetta et al. (2013).

These different aspects are discussed in further detail below
in Sects. 2.1 to 2.4.

2.1 Computation of NEE budget

The biases of the NEE fluxes that we aim to correct are partly
linked to model parameter errors that depend on vegeta-
tion type and to errors in the meteorological/vegetation state
which are region-dependent (e.g. radiation, LAI, temperature
and precipitation). In addition to that, the global optimized
fluxes used as reference do not currently have a strong con-
straint from observations at small spatial and temporal scales
due to the sparse observing network of atmospheric CO2.
Therefore, the NEE biases are not diagnosed at the model
grid-point scale, but as biases in the NEE budget over conti-
nental regions for different vegetation types and over a period
of 10 days. The 10-day regional budget provides an indicator
on the large-scale biases. Moreover, 10 days is a period that
can be used in the current framework of the C-IFS global at-
mospheric CO2 forecasting system. Figure 2 shows how the
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Figure 1. Schematic showing how BFAS fits in the atmospheric
CO2 forecasting system. BFAS is called before each forecast to
compute the scaling factors for the model NEE (i.e. GPP+Reco)
based on the past archived forecasts. The maps of the scaling fac-
tors are then passed to the model which applies the adjustment to
the output biogenic CO2 fluxes from the land surface model. After
combining the adjusted NEE fields with the other prescribed CO2
fluxes, the resulting bias corrected fluxes are passed to the transport
model to produce the atmospheric CO2 forecast.

uncorrected NEE from the past forecasts can be combined
to compute the 10-day mean budget before each new fore-
cast. The 1-day forecasts initialized from the previous seven
days are used together with the last 3-day forecast available
in order to create a 10-day window around the initial date of
the new forecast. This 10-day time window is slightly shifted
to the past because otherwise forecasts longer than 3 days
would be required to compute the budget, while errors in
the meteorology affecting the fluxes grow with forecast lead
time. Chevallier and Kelly (2002) found that forecast errors
associated with the location of extra-tropical weather sys-
tems affecting the cloud cover and temperature gradients –
which in turn will affect the NEE errors – are very small at
day 1. These errors continue to be small up to day 3, but they
can grow rapidly with forecast lead time (see Haiden et al.,
2015, for details on the IFS forecast error evaluation). The
different regions have been selected according to latitudinal
band characterized by seasonal cycle (Northern Hemisphere,

Figure 2. Schematic to illustrate how the 10-day NEE budget from
the model is computed in BFAS for the forecast at dayD by retriev-
ing the past forecasts of accumulated NEE. Note that the retrieved
NEE (computed by adding GPP and Reco) has not been corrected
by BFAS. The computation uses a set of 7 previous 1-day forecasts
(initialized atD−8,D−7,D−6, . . . untilD−2) together with the
latest 3-day forecast from the previous day (i.e.D−1) as shown by
the blue boxes.

tropics, and Southern Hemisphere), continental region, and
vegetation type.

In the C-IFS the vegetation types follow the BATS classi-
fication (Dickinson et al., 1986), which is widely used in me-
teorological and climate models. The vegetation classifica-
tion is designed to distinguish between roughness lengths for
the computation of the momentum, heat and moisture trans-
fer coefficients in the modelling of the fluxes from surface
to atmosphere. However, the BATS vegetation types are not
always suitable for the modelling of the CO2 fluxes. For ex-
ample, the interrupted forest type which constitutes around
25 % of the high vegetation cover encompasses many dif-
ferent types of vegetation, including tropical savanna and a
combination of remnants of forest or open woods lands with
field complexes. This could be an important source of error in
some regions. For this reason, BFAS allows the introduction
of new vegetation types for diagnosing the NEE biases. Trop-
ical savanna, which covers large areas in the tropical region,
has been added as a subtype of the interrupted forest vegeta-
tion type by using the Olson Global Ecosystem classification
(Olson, 1994a, b, https://lta.cr.usgs.gov/glcc/globdoc2_0).

Figure 3 shows the distribution of the dominant vegeta-
tion types used in BFAS. Land cover maps from GLCC ver-
sion 1 (https://lta.cr.usgs.gov/glcc) are used to compute the
land cover of the dominant high and low vegetation types
at each grid point. In BFAS, only one dominant vegetation
type is used to classify each grid point, and this must cover
more than 50 % of the grid box. Model grid points with less
than 50 % vegetation cover are not used. The comparison of
the modelled NEE with the optimized NEE fluxes is done
by computing 10-day budgets for each of the 16 vegetation
types (see Table 1) and 9 different regions (see Fig. 3).

2.2 Reference NEE budget

The residual NEE from optimized fluxes provides the refer-
ence for the flux adjustment scheme. Currently, there is no
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Figure 3. Dominant vegetation types based on the BATS classifica-
tion used in the C-IFS and extended to include the tropical savanna
subtype (in purple, as defined by the Olson (1994a) classification)
within the interrupted forest type (in light blue). The vegetation type
codes are described in Table 1. The nine regions used in the compu-
tation of the NEE budget are delimited by the black lines.

operational centre providing CO2 optimized fluxes at global
scale in near-real time. We have chosen to use the MACC
optimized fluxes (Chevallier et al., 2010) which are deliv-
ered around September each year for the previous year. The
MACC optimized CO2 fluxes are regularly improved and
their high quality has been recently shown by Kulawik et al.
(2016). Chevallier (2013) provides an evaluation of the in-
verted CO2 fluxes for 2010.

The computation of the residual is done by subtracting the
prescribed fluxes used in the C-IFS CO2 forecast over land
from the total optimized flux. The prescribed CO2 fluxes
from biomass burning and anthropogenic emissions in the
CO2 forecast are not the same as the ones used as prior fluxes
in the MACC flux inversion system. Not only they are from
different sources, but they are also used at different resolu-
tions. This means that there might be fires represented in one
and not the other, or with different emission intensities, as it
is the case for anthropogenic hotspots at high vs. low reso-
lutions. Thus, in order to avoid the transfer of inconsisten-
cies between the prescribed and prior fluxes into the NEE
residual, the regions with very high anthropogenic emissions
(larger than 3× 106 g C m−2 s−1) and fires are filtered out.

A climatology of these reference NEE fluxes is created us-
ing the last 10 available years and it is updated every time a
new year is available. Thus, allowing for slow decadal vari-
ations in the NEE reference. Figure 4 shows a comparison
of the optimized flux budget in 2010 and its climatology for
the crop vegetation type in North America. The inter-annual
variability of the optimized flux budget is depicted by the
standard deviation around the 10-year climatological mean
value. The reference NEE climatology is then adjusted to ac-
count for the inter-annual variability of the land sink fluxes
as follows:

f O
= f Oclim

+ γ σ
(
f Oclim

)
, (2)

Table 1. Percentage of land grid points at model resolution TL255
(∼ 80 km) for each dominant vegetation type, i.e. more than half of
the grid point is covered by that vegetation type. A land grid point
is defined by a land sea mask value greater than 0.5.

Vegetation Vegetation type Percentage of
code land points

1 Crops, mixed farming 9.9
2 Short grass 7.6
7 Tall grass 6.3
9 Tundra 6.3
10 Irrigated crops 2.2
11 Semidesert 13.5
13 Bogs and marshes 0.8
16 Evergreen shrubs 0.5
17 Deciduous shrubs 2.4
3 Evergreen needle leaf trees 5.7
4 Deciduous needle leaf Trees 2.4
5 Deciduous broadleaf trees 4.0
6 Evergreen broadleaf trees 12.1
18 Mixed forest/woodland 3.3
19 Interrupted forest 9.5
21 Tropical savanna (new type) 4.8
– Remaining land points without vegetation 8.7

where f is the 10-day NEE budget for a specific region
and vegetation type, f

O
is the reference budget, f Oclim and

σ(f Oclim) are the climatological mean and standard devia-
tion of the optimized flux budget, respectively, from 2004
to 2013, and γ is the corresponding standardized anomaly
of the NEE budget from the model with respect to the same
period. γ can be positive or negative. It represents the inter-
annual variability factor used to adjust the reference climato-
logical NEE budget and it is given by

γ =
fM
− fMclim

σ
(
fMclim

) , (3)

where fM is the model NEE budget, fMclim is the climato-
logical mean budget from the model and σ(fMclim) is the
standard deviation of the model NEE budget denoting the
typical amplitude of its inter-annual variability for the same
period as the climatology of the optimized flux budget (i.e.
2004 to 2013).

The γ inter-annual variability factor is multiplied by the
standard deviation of the optimized residual NEE budget –
representing the typical amplitude of inter-annual variability
– in order to offset the reference climatological NEE budget.
In this way, the inter-annual variability of the reference NEE
follows the inter-annual variability of the model NEE with
the same anomaly sign, while keeping its amplitude con-
strained by the standard deviation of the optimized flux bud-
get. Note that the use of this factor is optional. By setting it to
zero, the model budget can be constrained by the optimized
flux climatology. The rationale for applying this factor in the
C-IFS system is based on the fact that inter-annual variabil-
ity of the NEE budget is strongly linked to the inter-annual
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Figure 4. Time series of 10-day mean NEE budget (GtC day−1) as-
sociated with the crop vegetation type in North America from the
MACC-13R1 optimized flux data set in 2010 (red line) compared
to its climatology (2004–2013) (yellow line). The yellow shading
represents the standard deviation of the optimized flux budget (for
the same period) used to compute the inter-annual variability adjust-
ment applied to the reference climatology. Positive/negative values
correspond to a source/sink of CO2.

variability of climate variables such as precipitation and tem-
perature (Schaefer et al., 2002). Since information on these
climate variables is readily available in the C-IFS system, it
is worth exploring its impact on the CO2 forecast. A prelim-
inary assessment of the impact of including the inter-annual
variability factor was performed by comparing experiment
with and without the factor. Results confirmed a small but
positive impact (see Supplement). Details on the computa-
tion of this factor are given in the next section.

2.3 The inter-annual variability factor

The computation of the inter-annual variability factor γ re-
quires a model climate consistent with the forecast (i.e. same
meteorological analysis, same model version and same reso-
lution). Producing a consistent model climate is not a trivial
requirement, because both the operational model version and
analysis system can change frequently with new updates and
new observations, and high-resolution forecasts spanning a
period of 10 years (i.e. 2004 to 2013) are expensive. A fea-
sible solution has been found where the standardized NEE
anomaly from the model is computed using the operational
ensemble prediction system (ENS) forecasts and hindcasts
which are part of the ECMWF monthly forecasting system
(Vitart et al., 2008; Vitart, 2013, 2014). Every Monday and
Thursday the operational ENS is not only run for the actual
date, but also for the same calendar day of the past 20 years.
These hindcasts have the same resolution and model version
as the ENS forecasts and they constitute a valuable data set
used for the post-processing of the NWP forecasts from the

medium-range (10 days) up to 1-month lead times (Hagedorn
et al., 2012). The ensemble of forecasts is made of 5 mem-
bers (10 members since 2015) using perturbed initial condi-
tions (Lang et al., 2015) and stochastic physics in order to
represent forecast uncertainty (Palmer et al., 2009).

As the hindcasts are not performed daily, it is not possible
to aggregate consecutive 1-day forecasts into a 10-day pe-
riod to compute a mean budget as shown in Fig. 2. In order
to circumvent this, the mean budget is computed by averag-
ing the 1-day forecast NEE from all the ensemble members
available in the hindcasts. This is done for each year from
2004 to 2013 to preserve consistency with the NEE clima-
tology from the optimized fluxes. The model climate fMclim

given by the 10-year mean budget and its typical inter-annual
variability σ

(
fMclim)

can then be obtained by calculating the
mean value and standard deviation, respectively, over that pe-
riod. Similarly, the model budget fM is calculated from the
NEE ensemble mean of the ENS forecast for the current date
using the same number of ensemble members as the ENS
hindcasts. The standardized anomaly γ is finally obtained by
subtracting the 10-year mean budget from the current budget
and dividing the anomaly by the standard deviation. Since
the hindcasts are available every Monday and Thursday, γ
is only updated twice a week. These updates are routinely
monitored during the forecast (see Sect. 4).

2.4 Partition of NEE adjustment

The final stage in the flux adjustment is the attribution of the
NEE correction to the different biogenic fluxes in the model.
The residual NEE from optimized fluxes only provides infor-
mation on the total flux from the land ecosystem exchange.
While in land vegetation models, NEE is the combination of
two opposing fluxes: gross primary production (GPP) and the
ecosystem respiration (Reco). Given that we have no informa-
tion on whether the NEE error is associated with the GPP or
the Reco fluxes, a strategy has to be defined in order to parti-
tion the NEE correction into GPP and Reco. The underlying
strategy used here is to have the smallest flux adjustment pos-
sible. Namely, the scaling factors should be as close to 1 as
possible.

The first step is to distinguish between the positive and
negative values of the NEE scaling factor (α). A positive
NEE scaling factor implies the budget of the NEE in the
model has the correct sign but the wrong magnitude. In that
case, the scaling of the flux will be smallest if the dominant
component of NEE is scaled. That is to say, the flux correc-
tion will be applied to GPP during the growing season and
to Reco during the senescence period. Whereas if the scaling
factor is negative – i.e. the modelled NEE has the wrong sign
– only the flux with smallest magnitude is corrected (GPP or
Reco) to ensure the scaling factor of the modelled fluxes is
always positive.

The scaling factor α is then converted into a scaling factor
for the dominant component of the NEE flux. If the magni-
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Figure 5. Time series of GPP and Reco flux scaling factors in blue and red lines, respectively, for the crop vegetation type in 2010 in the
different regions (see map in Fig. 3 depicting the extent of the crops within each region).

tude of GPP is larger than the magnitude of Reco, then the
scaling factor for GPP and Reco are defined as follows:

αGPP =
αNEE−Reco

GPP
αReco = 1.0. (4)

Similarly, if |Reco|> |GPP| then

αGPP = 1.0

αReco =
αNEE−GPP

Reco
. (5)

This partition of the flux adjustment is a modelling choice
based on minimum flux adjustment criteria. Other solutions
might be possible given additional information on either GPP
or Reco budgets.

The αGPP and αReco factors are computed for each vegeta-
tion type and region and then re-mapped as two-dimensional
fields using the dominant vegetation type map in Fig. 3. The
resulting maps for αGPP and αReco are subsequently passed to
the carbon module in the land surface model in order to scale
GPP and Reco.

3 CO2 forecast simulations

Several simulations have been performed in order to
test the impact of BFAS on the atmospheric CO2 fore-
casts (see Table 2). All the simulations use the C-IFS
CO2 forecasting system (Agustí-Panareda et al., 2014)
based on the IFS model (www.ecmwf.int/en/forecasts/

documentation-and-support). They all share the same trans-
port. The only difference between them is the CO2 surface
fluxes they use as described in Table 2. The impact of BFAS
is assessed by comparing the simulations using modelled
NEE fluxes without BFAS (CTRL) and with BFAS (BFAS).
The BFAS simulation is also compared with the simulations
using optimized fluxes (OPT) and a climatology of optimized
fluxes (OPT-CLIM). Both OPT and OPT-CLIM simulations
constitute a benchmark because they are driven by the refer-
ence fluxes used in BFAS. From these experiments we expect
to see the forecast from BFAS to be closer to the benchmark
forecasts (in particular OPT-CLIM) than to the CTRL fore-
cast.

The forecasts are performed using the cyclic configuration
described by Agustí-Panareda et al. (2014) with a spectral
resolution of TL255, equivalent to around 80 km in the hor-
izontal, and 60 vertical levels. They are initialized daily at
00:00 UTC with ECMWF operational analysis, while the at-
mospheric CO2 is cycled from one forecast to the next, as in
a free run. The simulations span the period from 1 January
to 31 December 2010. This period has been selected because
of the large variety of observations available to evaluate the
BFAS performance on the atmospheric CO2 forecasts. The
CO2 initial conditions on 1 January 2010 are from the at-
mospheric CO2 analysis using GOSAT CO2 retrievals (Hey-
mann et al., 2015).
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Table 2. List of simulations with the same transport and different CO2 surface fluxes.

Experiment name CO2 surface fluxes

CTRL Biogenic fluxes from CTESSEL (Boussetta et al., 2013),
biomass burning fluxes from GFAS (Kaiser et al., 2012),
ocean fluxes from Takahashi et al. (2009),
and EDGAR v4.2 anthropogenic fluxes (Janssens-Maenhout et al., 2012)

OPT MACC-13R1 optimized fluxes (Chevallier et al., 2010) for 2010
OPT-CLIM MACC-13R1 optimized flux climatology (2004–2013)
BFAS Same fluxes as CTRL including BFAS

4 Monitoring the flux adjustment

The flux adjustment is monitored by plotting time series of
the flux scaling factors for each vegetation type and region.
For example, Fig. 5 shows the GPP and Reco scaling fac-
tors for the crop vegetation type which is present in all re-
gions. The values range from 0.5 to 6. These coefficients
are computed daily before the beginning of each forecast
and they are kept constant throughout the forecast. Gener-
ally, there is a slow variation of the coefficients from one
day to the next. This is expected since the coefficients are
obtained from large-scale budgets computed over a 10-day
period. The map of the GPP and Reco scaling factors applied
to adjust the modelled biogenic fluxes on 15 March 2010 is
shown in Fig. 6. These maps can be very useful to monitor
the flux adjustment because they can provide alerts on the
regions with largest biases to model developers.

The effect of the flux adjustment on the NEE budget is
shown in Fig. 7. The adjusted biogenic fluxes should always
lead to an NEE budget close to the budget of the optimized
NEE climatology. However, the fit will also depend on the
degree of inter-annual variability of the model determined by
parameter γ in Eq. (3). Figure 8 displays the monitoring of γ
given by the standardized NEE anomaly of the model. Posi-
tive values mean the CO2 source is larger than normal and/or
the CO2 sink is lower than normal with respect to the 10-
year mean budget of the model, covering the same period as
the reference climatology. Conversely, negative values cor-
respond to a smaller than normal source and/or larger than
normal sink. When γ is larger than 1, the model anomaly is
larger than 1σ . This indicates the possible occurrence of an
extreme event. Prolonged extreme events – such as droughts
– would have an effect on the NEE budget and the computa-
tion of the biogenic flux adjustment.

5 Impact of the flux adjustment

The impact of BFAS is shown by comparing the atmo-
spheric CO2 from the BFAS forecast to the CTRL forecast,
and to the benchmark forecasts with optimized fluxes (OPT
and OPT-CLIM) at several observing sites. Four sites from
the NOAA/ESRL atmospheric baseline observatories (www.

Figure 6. Map of scaling factors for (a) GPP and (b) Reco on
15 March 2010.

esrl.noaa.gov/gmd/obop, Thoning et al., 2012) are used to
evaluate the reduction of the large-scale biases in the well-
mixed background air. In addition, four Total Carbon Col-
umn Observing Network stations (GGG2014 TCCON data,
Wunch et al., 2011, see Table 3 and www.tccon.caltech.edu)
are also used to assess the impact on the atmospheric CO2
column-average dry molar fraction. Finally, three continental
sites from the NOAA/ESRL tall tower network (www.esrl.
noaa.gov/gmd/ccgg/towers, Andrews et al., 2014) are used
to investigate the impact of BFAS on the synoptic skill of the
forecasts. The results are grouped into the impacts on bias
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Figure 7. Time series of GPP (in blue), Reco (in red) and NEE (in green) daily budget (GtC day−1) before and after the flux adjustment (see
dashed lines and solid lines, respectively) for crops in 2010 in the different regions. The reference budget provided by the climatology of
MACC-13R1 optimized fluxes (2004–2013) and the MACC-13R1 optimized fluxes for 2010 are depicted by the black and magenta lines,
respectively. Positive/negative values correspond to a source/sink of CO2.

Table 3. List of TCCON stations used in Fig. 10 ordered by latitude from north to south.

Site Latitude Longitude Altitude Reference
(degrees) (degrees) (m a.s.l.)

Sodankylä 67.37 26.63 190.0 Kivi et al. (2014)
Białystok 53.23 23.02 160.0 Deutscher et al. (2014)
Lamont 36.60 −97.49 320.0 Wennberg et al. (2014)
Wollongong −34.41 150.88 30.0 Griffith et al. (2014)

reduction and synoptic skill in the following two sections. A
comprehensive evaluation of the uncertainty reduction in the
BFAS simulation based on all the ObsPack (2015) (Masarie
et al., 2014) in situ flask and continuous observations, as well
as the NOAA/ESRL aircraft vertical profiles (Sweeney et al.,
2015) is also provided in the Supplement.

5.1 Biases in atmospheric CO2

Figure 9 demonstrates that BFAS is very effective at reduc-
ing the atmospheric CO2 biases in the background air at
all the NOAA/ESRL continuous baseline stations. The bi-
ases in the CTRL forecast range from −1.9 to −4.5 ppm;
whereas, the BFAS forecast has biases of −0.5 ppm or less
over the whole year. These values are close to the annual
biases of the OPT and OPT-CLIM experiments ranging be-
tween −0.4 and 0.5 ppm. The monthly biases in BFAS can

be larger than its annual biases. For example, there is a bias
of up to −1 ppm from March to September in the Southern
Hemisphere (Fig. 9c, d). This bias is thought to originate in
the tropical regions and transported to the Southern Hemi-
sphere as shown by a preliminary comparison with IASI CO2
(Crevoisier et al., 2009) (not shown here). The bias starts to
grow at the end of the growing season during summer time.
This is also the case for the high latitude station at Barrow,
where there is a negative bias of a few ppm from the last week
of July to the end of September as shown in Fig. 9a. In sum-
mary, BFAS is not able to completely remove the negative
model bias at the end of the growing season. In the North-
ern Hemisphere at the end of winter and throughout spring
(from March to May) there is a positive model bias, i.e. the
atmospheric CO2 is overestimated in the model. Although
the OPT and OPT-CLIM simulations also have a slight posi-
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Figure 8. Time series of the standardized anomaly of the modelled NEE budget (γ in Eq. 3) for crops in 2010 in the different regions. Positive
values indicate larger/smaller CO2 sources/sinks than normal based on the mean climatological budget; whereas negative values correspond
to smaller/larger CO2 sources/sinks than normal.

tive bias in winter, this positive bias is enhanced in the BFAS
simulation.

At the TCCON sites (Fig. 10), the atmospheric CO2
column-average dry molar fraction also shows the same large
bias reduction in BFAS with respect to CTRL. The magni-
tude of the BFAS annual biases in the atmospheric column is
generally less than 1 ppm, slightly higher than the OPT and
OPT-CLIM biases (less than 0.5 ppm), but much lower than
the CTRL biases (from 1.5 to 3.3 ppm). The results at the TC-
CON sites are consistent with those from the NOAA/ESRL
baseline sites. Namely, in the Northern Hemisphere there is
a growing overestimation of the atmospheric CO2 at the end
of winter (around March). While at the end of the grow-
ing season in both the Northern Hemisphere and the South-
ern Hemisphere (August and March, respectively) there is
a growing negative bias, i.e. an overestimation of the sink.
One hypothesis that could explain why BFAS is not able to
achieve as small a bias as the forecast with optimized fluxes
lies in the fact that the optimized NEE used as a reference
in BFAS is computed as a residual after removing the effect
of fires and anthropogenic fluxes. Inconsistencies in the fire
and anthropogenic emissions used by the optimized fluxes
and the model will lead to errors in the optimized residual
NEE. These inconsistencies are mainly associated with the
use of different resolutions. Further investigation is required
to address this issue.

5.2 Synoptic variability of atmospheric CO2

The C-IFS CO2 forecast has been shown to have high skill
in simulating the synoptic variability of atmospheric CO2
(see Agustí-Panareda et al., 2014), except during the spring
months, coinciding with an early start of the CO2 drawdown
period in the model. For this reason, we have examined the
impact of BFAS on the synoptic variability of daily mean
atmospheric CO2 at three continental NOAA/ESRL tower
sites in March. Over this period, the day-to-day variability
of atmospheric CO2 at those sites is associated with the ad-
vection of atmospheric CO2 by baroclinic synoptic weather
systems as they impinge on the large-scale continental gra-
dient of atmospheric CO2. Table 4 clearly demonstrates that
with BFAS the synoptic forecast skill is greatly improved at
all sites, with correlation coefficients between simulated and
observed atmospheric CO2 exceeding 0.8. The improvement
is particularly striking at Park Falls (Wisconsin, USA) and
West Branch (Iowa, USA) at the centre of North America,
where the correlation coefficients in CTRL are very low (i.e.
below 0.5). The OPT and OPT-CLIM forecasts have gener-
ally high correlation coefficients, comparable to BFAS. Only
at the level closest to the surface, the values are slightly lower
than BFAS. This can be explained by the fact that the MACC-
13R1 optimized fluxes do not comprise synoptic variability.
Thus, when the synoptic variability of the fluxes contributes
to the atmospheric CO2 variability, the correlation coeffi-
cients are smaller.

The positive impact of BFAS on the CO2 synoptic vari-
ability is illustrated in Fig. 11. The large synoptic variabil-
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Table 4. Correlation coefficient of different forecast (FC) experiments (see Table 2) with observations at three NOAA/ESRL tall towers for
daily mean dry molar fraction of atmospheric CO2 in March 2010. The dash symbol means the correlation is not significant.

NOAA/ESRL Latitude, Sampling BFAS CTRL OPT OPT-CLIM
Tower site Longitude, level FC FC FC FC
(ID) Altitude (m)

Park Falls, 45.95◦ N, 30 0.843 0.338 0.794 0.797
Wisconsin 90.27◦W, 122 0.931 0.508 0.893 0.883
(LEF) 472 m 396 0.919 – 0.875 0.881

West Branch, 41.72◦ N, 31 0.748 0.496 0.590 0.590
Iowa 91.35◦W, 99 0.833 0.436 0.767 0.720
(WBI) 242 m 379 0.851 0.356 0.887 0.876

Argyle, 45.03◦ N, 12 0.857 0.839 0.808 0.893
Maine 68.68◦W, 30 0.875 0.835 0.816 0.938
(AMT) 50 m 107 0.861 0.668 0.816 0.927

ity is characterized by the advection of CO2-rich anoma-
lies (with up to 10 ppm amplitude) as shown by the CO2
peaks on 10–12 March at Park Falls, and 8–9, 12–13 and 16–
17 March at West Branch. These CO2 anomalies originate
from the advection across the large-scale continental gradi-
ents of atmospheric CO2 which ultimately reflect the large-
scale distribution of CO2 surface fluxes (Keppel-Aleks et al.,
2012). In the case study here, the CO2-rich air is located to
the south of the observing stations, as shown by the distri-
bution of the monthly mean atmospheric CO2 depicting the
large-scale gradients across the continent at the level corre-
sponding to the height of the tall towers (Fig. 12a and b). In
the CTRL forecast, there is no monthly mean gradient south
of the stations (Fig. 12c). This explains why without BFAS
the synoptic variability is very small and largely underesti-
mated throughout March. While in BFAS the gradient south
of the observing stations is very pronounced (Fig. 12d), fol-
lowing a similar pattern to OPT and OPT-CLIM. There are
still some differences between the three simulations. OPT-
CLIM results in stronger gradients than OPT and BFAS en-
hances the gradient even further, leading to a slight over-
estimation of the synoptic variability. These differences in
the patterns of the atmospheric CO2 are directly linked to the
differences in the CO2 surface fluxes (Fig. 13). As expected,
the flux adjustment from BFAS results in a flux pattern sim-
ilar to OPT-CLIM and OPT, with a stronger source to the
south of the observing stations. Whereas in CTRL there is a
large sink area south of the observing stations, in the region
of the Gulf of Mexico, consistent with the CTESSEL early
growing season (Balzarolo et al., 2014).

6 Discussion

All the results from the BFAS experiments indicate that
BFAS is highly beneficial to the C-IFS CO2 forecasting sys-
tem, both in terms of reducing the atmospheric CO2 biases

and improving the synoptic skill of the model. As shown in
Sect. 2, the scheme is simple and it is easy to implement and
run. Because BFAS essentially works as a layer on top of the
model, it can adapt to model changes with great flexibility.
For all these reasons, BFAS is now part of the operational
global C-IFS analysis and forecasting system.

Notwithstanding all the advantages of BFAS listed above,
there are also caveats that need to be considered, further
tested, and addressed. A discussion of the current limitations
of BFAS is provided in this section, together with the poten-
tial use of BFAS for model development, data assimilation
purposes, and the implications for users.

6.1 Current limitations in BFAS

Optimized fluxes have uncertainties of their own and repre-
sent the large-scale variability of the CO2 surface fluxes on
supra-synoptic time-scales. They only estimate the total flux
and the NEE residual approach can transfer biases from other
fluxes into the NEE. The use of a climatology also precludes
the correction of the inter-annual variability in the model.

The aggregation criteria of budget errors can be very chal-
lenging because the error can originate from different aspects
of the model. Clearly, errors in model parameters associated
with vegetation type are a good candidate. However, in the
future errors in climate forcing, errors in LAI, missing pro-
cesses and other potential sources of error should also be con-
sidered.

The partition of the NEE flux adjustment into the modelled
biogenic fluxes (GPP andReco) is currently ad hoc, leading to
the transfer of errors from GPP to Reco and vice-versa. This
problem could be addressed by using other independent data
sets of GPP and Reco (e.g. Jung et al., 2011) that contain ad-
ditional information on how to partition the NEE adjustment.
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10410 A. Agustí-Panareda et al.: Biogenic flux adjustment scheme for CO2 analysis and forecasting system

Figure 9. Daily mean atmospheric CO2 dry molar fraction (ppm) from NOAA/ESRL continuous baseline stations (black circles) at (a) Bar-
row, Alaska, USA (71.32◦ N, 156.61◦W), (b) Mauna Loa, Hawaii, US (19.54◦ N, 155.58◦W), (c) Tutuila, American Samoa, USA (14.25◦ S,
170.56◦W), (d) South Pole, Antarctica (89.98◦ S, 24.8◦W) and the different forecast experiments: BFAS (cyan), CTRL (red), OPT (green)
and OPT-CLIM (blue). See Table 2 for a description of the different experiments. The mean (bias) and standard deviation (SD) of the model
errors are shown at the top of each panel.

6.2 BFAS for model development

BFAS can run in both online and offline modes. Thus, it can
provide a tool to diagnose regions that contribute to the er-
rors in the global budget resulting in large-scale errors of at-
mospheric CO2. The maps of biogenic flux scaling factors
can be used to compute maps of flux adjustment (e.g. ad-
justed NEE – original NEE) which can then be used to di-
agnose model errors. The synthesis of the mean adjustments

into monthly model biases for different vegetation types can
then guide the effort to develop the carbon model further. For
example, in regions where the bias is consistent between dif-
ferent months, the corrected NEE could be used to re-tune
model parameters such as the reference ecosystem respira-
tion or the mesophyll conductance, previously optimized by
Boussetta et al. (2013) using a subset of FLUXNET data.
Specific vegetation types can be identified where model im-
provements could be achieved by using information from
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Figure 10. Daily mean atmospheric CO2 column-average dry molar fraction (ppm) observed at four TCCON stations (see Table 3) as shown
by the black circles, and simulated by the different forecast experiments: BFAS (cyan), CTRL (red), OPT (green) and OPT-CLIM (blue). See
Table 2 for a description of the different experiments. The mean (δ) and standard deviation (σ ) of the model errors are shown at the top of
each panel.

BFAS. For instance, crops have the same large Reco scal-
ing (> 1.5) over all the Northern Hemisphere regions during
winter months when the ecosystem respiration is the domi-
nant component of NEE. This underestimation in the ecosys-
tem respiration can be addressed by modifying the value of
the reference respiration parameter used for crops. In this
case, the same procedure used by Boussetta et al. (2013)
could be applied to optimize the specific model parameter

using the BFAS adjusted fluxes as pseudo-observations to-
gether with the FLUXNET data.

Further information on error sources in fluxes can be ob-
tained by comparing the corrected fluxes with the eddy co-
variance observations available in near-real time from the
Integrated Observation System (ICOS) Ecosystem Thematic
Centre (ETC, http://www.europe-fluxdata.eu). For example,
preliminary comparisons have shown that there are large dif-

www.atmos-chem-phys.net/16/10399/2016/ Atmos. Chem. Phys., 16, 10399–10418, 2016

http://www.europe-fluxdata.eu


10412 A. Agustí-Panareda et al.: Biogenic flux adjustment scheme for CO2 analysis and forecasting system

Figure 11. Daily mean atmospheric CO2 dry molar fraction (ppm)
in March 2010 from NOAA/ESRL tall towers (black circles) at
(a) Park Falls (Wisconsin, USA, 45.95◦ N, 90.27◦W) and (b) West
Branch (Iowa, USA, 41.72◦ N, 91.35◦W) and the different fore-
cast experiments: BFAS (cyan), CTRL (red), OPT (green) and OPT-
CLIM (blue) (see Table 2 for a description of the different experi-
ments).

ferences in the model-observation fit between needle leaf ev-
ergreen (pine) trees in the boreal and Mediterranean regions.
This is consistent with results from Balzarolo et al. (2014),
and it highlights the need for a new sub-classification of the
evergreen needle leaf forests in regions with Mediterranean
climate.

6.3 BFAS in the data assimilation framework

Currently, BFAS is only designed to be used as a bias correc-
tion computed before each forecast by using a reference data
set based on optimized fluxes. In the future, BFAS could be
adapted to work within a data assimilation (DA) framework
in the C-IFS. To start with, the specification of uncertain-
ties associated with both the reference data set and the model
fluxes and the covariance of those uncertainties would allow
a more optimal estimation of the flux adjustment. These un-
certainties can be obtained from the flux inversion systems
for the optimized fluxes and from the ECMWF ENS fore-
casts for the model fluxes.

Including BFAS in the C-IFS DA framework needs fur-
ther exploration. The C-IFS uses a short time window (cur-
rently 12 h) to assimilate meteorological observations from

very dense observing networks. With the short time window
it is not possible to properly constrain the slowly varying
global mass of the long-lived greenhouse gases due to the
sparseness of their observing system. For instance, the cur-
rent GOSAT and OCO-2 CO2 observations do not cover high
latitudes in winter. However, if we combined the assimila-
tion of optimized fluxes (which already contain the global
mass constraint) with observations linked to local fluxes (e.g.
solar-induced chlorophyll fluorescence products from satel-
lites, NEE eddy covariance observations and in situ atmo-
spheric CO2 observations) it might be possible to obtain an
optimal estimate of more local scaling factors, while still re-
specting the global mass constraint. The possibility of opti-
mizing the scaling factors in the DA system within the weak
constraint framework (Trémolet, 2006, 2007) also needs to
be explored in the future.

6.4 Aspects to be considered by users

The implementation of BFAS is straightforward. Therefore,
it could be easily used by other models. The only require-
ments are: (i) a reference budget which can be obtained from
a climatology of optimized fluxes (e.g. the MACC prod-
uct can be easily obtained from www-lscedods.cea.fr/invsat/
PYVAR14_MACC/V2/Fluxes/3Hourly and it is well doc-
umented); (ii) past 10-day NEE simulated by the forward
model; (iii) the NEE anomaly of the forward model with re-
spect to its climate based on a 10-year simulation. The use of
the NEE anomaly is optional, as its impact is relatively small
(see Supplement).

The underlying motivation of BFAS is to improve the
CO2 analysis and forecast for users (e.g. those working on
flux inversion systems, planning field experiments, or requir-
ing boundary conditions for regional models). For this rea-
son, it is paramount to provide information on all the in-
put data going into BFAS. These are primarily continental-
scale climatological budgets from modelled NEE and op-
timized fluxes. There is also some input from the anthro-
pogenic emissions and the biomass burning emissions to ex-
tract the NEE as a residual from the optimized fluxes. The
documentation of the specific components used in the C-
IFS BFAS system and their uncertainties can be found in
Boussetta et al. (2013), Chevallier et al. (2010), Cheval-
lier (2015), Janssens-Maenhout et al. (2012) and Kaiser
et al. (2012). The input data streams used in BFAS can
be obtained from http://copernicus-support.ecmwf.int for
C-IFS NEE and GFAS biomass burning fluxes; from the
EDGAR database http://edgar.jrc.ec.europa.eu for the an-
thropogenic fluxes; and from www-lscedods.cea.fr/invsat/
PYVAR14_MACC/V2/Fluxes/3Hourly for the MACC opti-
mized fluxes.

Since the BFAS product contains information from the
optimized fluxes, users should be aware that the optimized
fluxes assimilated most available background air-sample
monitoring sites (listed in the supplement of Chevallier,
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Figure 12. Monthly mean atmospheric CO2 dry molar fraction (ppm) at the model level approximately corresponding to the highest sampling
height of the Park Falls and West Branch NOAA/ESRL tall towers (see black triangles) in March 2010 from (a) OPT-CLIM, (b) OPT,
(c) CTRL and (d) BFAS experiments (see Table 2 for a description of the different experiments).

Figure 13. Monthly mean total CO2 flux (µmol m−2 s−1) in March 2010 from (a) OPT-CLIM, (b) OPT, (c) CTRL and (d) BFAS experiments
(see Table 2 for a description of the different experiments). The black triangles depict the location of the NOAA/ESRL tall towers plotted in
Fig. 11.
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2015, see http://www.atmos-chem-phys.net/15/11133/2015/
acp-15-11133-2015-supplement.pdf). A specification of the
overall uncertainty associated with the BFAS simulation and
the resulting reduction with respect to the control simulation
is given in the Supplement.

7 Summary

This paper addresses the challenge of designing an online
bias correction for an atmospheric CO2 analysis/forecasting
system. The overarching aim is to deliver an atmospheric
CO2 analysis and forecast that can be useful to the scientific
community, e.g. working on data assimilation of atmospheric
CO2 observations, the development of the CO2 observing
system and providing boundary conditions for CO2 regional
modelling. Tuning model parameters and/or re-scaling fluxes
offline are not sufficient to guarantee a bias reduction in the
system. Thus, an online adaptive system is required because
errors in the meteorology can evolve as a result of regular
operational NWP model upgrades and these affect the NEE
budget in the model. This is achieved in the new biogenic flux
adjustment scheme (BFAS) by a simple scaling of the 10-day
NEE budgets for different vegetation types and regions us-
ing a climatology of the MACC optimized fluxes (Chevallier
et al., 2010) as a reference, adjusted to preserve the model
inter-annual variability.

This paper shows that BFAS has a positive impact on
the atmospheric CO2 forecast by greatly reducing the atmo-
spheric CO2 biases in background air and improving the syn-
optic variability in continental regions affected by ecosystem
fluxes. The improvement in the synoptic skill of the fore-
cast is associated with underlying changes in the large-scale
gradient of the NEE fluxes where optimized fluxes provide
information.

BFAS has been recently implemented in the C-IFS opera-
tional CO2 forecast and analysis system, because of its sim-
plicity, adaptability to model changes and beneficial impact.
In this paper, the C-IFS model is just providing an example
on how this method can be applied efficiently in an opera-
tional forecasting system. Other models could easily adopt
such a system as there are only a few components required
for its implementation (see Sect. 6.4).

As a diagnostic tool, BFAS has also the potential to pro-
vide feedback for model development. The use of BFAS in
the data assimilation framework will be explored in the fu-
ture.

8 Data availability

The C-IFS source code is integrated into ECWMF’s
IFS code, which is only available subject to a licence
agreement with ECMWF. ECMWF member-state weather
services and their approved partners will get access
granted. The IFS code without modules for assimilation

and chemistry can be obtained for educational and aca-
demic purposes as part of the openIFS release (https://
software.ecmwf.int/wiki/display/OIFS/OpenIFS+Home). A
detailed documentation of the IFS code is available
from https://software.ecmwf.int/wiki/display/IFS/CY40R1+
Official+IFS+Documentation. The output from C-IFS can be
requested via http://copernicus-support.ecmwf.int. Informa-
tion on how to access the different data streams used in BFAS
is provided in Sect. 6.4.

The Supplement related to this article is available online
at doi:10.5194/acp-16-10399-2016-supplement.
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