Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 16
Atmos. Chem. Phys., 16, 10369–10383, 2016
https://doi.org/10.5194/acp-16-10369-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 10369–10383, 2016
https://doi.org/10.5194/acp-16-10369-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Aug 2016

Research article | 16 Aug 2016

Impacts of historical climate and land cover changes on fine particulate matter (PM2.5) air quality in East Asia between 1980 and 2010

Yu Fu et al.

Viewed

Total article views: 1,789 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,050 687 52 1,789 223 36 56
  • HTML: 1,050
  • PDF: 687
  • XML: 52
  • Total: 1,789
  • Supplement: 223
  • BibTeX: 36
  • EndNote: 56
Views and downloads (calculated since 27 Apr 2016)
Cumulative views and downloads (calculated since 27 Apr 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 26 Sep 2020
Publications Copernicus
Download
Short summary
The effects of climate change would partly counteract the emission-driven increase in PM2.5 in winter in most of eastern China, but exacerbate PM2.5 pollution in summer in North China Plain. Land cover and land use change might partially offset the increase in summertime PM2.5 but further enhance wintertime PM2.5 in the model by modifying the dry deposition of various PM2.5 precursors and biogenic volatile organic compound emissions, which also act as important factors in modulating air quality.
The effects of climate change would partly counteract the emission-driven increase in PM2.5 in...
Citation
Altmetrics
Final-revised paper
Preprint