Articles | Volume 15, issue 16
https://doi.org/10.5194/acp-15-9521-2015
https://doi.org/10.5194/acp-15-9521-2015
Research article
 | 
26 Aug 2015
Research article |  | 26 Aug 2015

Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO2, H2O and dimethyl sulfide

M. J. Newland, A. R. Rickard, L. Vereecken, A. Muñoz, M. Ródenas, and W. J. Bloss

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Mike Newland on behalf of the Authors (31 Jul 2015)  Author's response   Manuscript 
ED: Publish as is (13 Aug 2015) by Sergey A. Nizkorodov
AR by Mike Newland on behalf of the Authors (14 Aug 2015)
Download
Short summary
Stabilised Criegee intermediates (SCIs) are formed through alkene-ozone reactions, which occur throughout the atmospheric boundary layer. Recent direct laboratory studies have shown that SCI react rapidly with SO2, NO2 and other trace gases, affecting air quality and climate. We present experimental data from the EUPHORE atmospheric simulation chamber, in which we determine the effects of the ozonolysis of isoprene, on the oxidation of SO2 as a function of H2O and dimethyl sulfide concentration.
Altmetrics
Final-revised paper
Preprint