Articles | Volume 15, issue 14
https://doi.org/10.5194/acp-15-8115-2015
https://doi.org/10.5194/acp-15-8115-2015
Research article
 | 
23 Jul 2015
Research article |  | 23 Jul 2015

MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe

M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch

Abstract. This paper presents the first ensemble modelling experiment in relation to birch pollen in Europe. The seven-model European ensemble of MACC-ENS, tested in trial simulations over the flowering season of 2010, was run through the flowering season of 2013. The simulations have been compared with observations in 11 countries, all members of the European Aeroallergen Network, for both individual models and the ensemble mean and median. It is shown that the models successfully reproduced the timing of the very late season of 2013, generally within a couple of days from the observed start of the season. The end of the season was generally predicted later than observed, by 5 days or more, which is a known feature of the source term used in the study. Absolute pollen concentrations during the season were somewhat underestimated in the southern part of the birch habitat. In the northern part of Europe, a record-low pollen season was strongly overestimated by all models. The median of the multi-model ensemble demonstrated robust performance, successfully eliminating the impact of outliers, which was particularly useful since for most models this was the first experience of pollen forecasting.

Download
Short summary
The paper presents the first ensemble modelling experiment for forecasting the atmospheric dispersion of birch pollen in Europe. The study included 7 models of MACC-ENS tested over the season of 2010 and applied for 2013 in forecasting and reanalysis modes. The results were compared with observations in 11 countries, members of European Aeroallergen Network. The models successfully reproduced the timing of the unusually late season of 2013 but had more difficulties with absolute concentration.
Altmetrics
Final-revised paper
Preprint