Articles | Volume 15, issue 14
https://doi.org/10.5194/acp-15-7819-2015
https://doi.org/10.5194/acp-15-7819-2015
Research article
 | 
16 Jul 2015
Research article |  | 16 Jul 2015

Changing shapes and implied viscosities of suspended submicron particles

Y. Zhang, M. S. Sanchez, C. Douet, Y. Wang, A. P. Bateman, Z. Gong, M. Kuwata, L. Renbaum-Wolff, B. B. Sato, P. F. Liu, A. K. Bertram, F. M. Geiger, and S. T. Martin

Viewed

Total article views: 5,903 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,706 2,839 358 5,903 659 121 187
  • HTML: 2,706
  • PDF: 2,839
  • XML: 358
  • Total: 5,903
  • Supplement: 659
  • BibTeX: 121
  • EndNote: 187
Views and downloads (calculated since 09 Mar 2015)
Cumulative views and downloads (calculated since 09 Mar 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Latest update: 05 Feb 2025
Download
Short summary
The present work estimates the viscosity of submicron organic particles while they are still suspended as an aerosol without further post-processing techniques that can possibly alter the properties of semi-volatile materials. Results imply that atmospheric particles, at least those similar to the ones of this study and for low- to middle-RH regimes, can reach equilibrium or react rather slowly with the surrounding gas phase on time scales even longer than the residence time in the atmosphere.
Share
Altmetrics
Final-revised paper
Preprint