Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7203-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-15-7203-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Experimental investigation of ion–ion recombination under atmospheric conditions
A. Franchin
CORRESPONDING AUTHOR
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
S. Ehrhart
CERN, 1211 Geneva, Switzerland
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
J. Leppä
Finnish Meteorological Institute, Atmospheric Composition Research, P.O. Box 503, 00101 Helsinki, Finland
California Institute of Technology, Department of Chemical Engineering, 1200 E. California Blvd., Mail Code 101-20, Pasadena, CA 91125, US
T. Nieminen
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Helsinki Institute of Physics, Helsinki, Finland
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 3J5, Canada
Environment Canada, Downsview, Toronto, M3H 5T4, Canada
S. Schobesberger
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
D. Wimmer
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
J. Duplissy
Helsinki Institute of Physics, Helsinki, Finland
F. Riccobono
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
E. M. Dunne
Finnish Meteorological Institute, Kuopio Unit, P.O. Box 1627, 70211 Kuopio, Finland
L. Rondo
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
A. Downard
California Institute of Technology, Department of Chemical Engineering, 1200 E. California Blvd., Mail Code 101-20, Pasadena, CA 91125, US
F. Bianchi
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland
University of Vienna, Universitätsring 1, 1010 Vienna, Austria
G. Tsagkogeorgas
Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany
K. Lehtipalo
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
H. E. Manninen
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
J. Almeida
CERN, 1211 Geneva, Switzerland
A. Amorim
CENTRA-SIM, F.C.U. Lisboa and U. Beira Interior, Portugal
P. E. Wagner
University of Vienna, Universitätsring 1, 1010 Vienna, Austria
A. Hansel
Ionicon Analytik GmbH and University of Innsbruck, Institute for Ion and Applied Physics, 6020 Innsbruck, Austria
J. Kirkby
CERN, 1211 Geneva, Switzerland
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
A. Kürten
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
N. M. Donahue
Carnegie Mellon University, Center for Atmospheric Particle Studies, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
V. Makhmutov
Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
S. Mathot
CERN, 1211 Geneva, Switzerland
A. Metzger
Ionicon Analytik GmbH and University of Innsbruck, Institute for Ion and Applied Physics, 6020 Innsbruck, Austria
T. Petäjä
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
R. Schnitzhofer
Ionicon Analytik GmbH and University of Innsbruck, Institute for Ion and Applied Physics, 6020 Innsbruck, Austria
M. Sipilä
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Y. Stozhkov
Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
CENTRA-SIM, F.C.U. Lisboa and U. Beira Interior, Portugal
V.-M. Kerminen
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, Atmospheric Composition Research, P.O. Box 503, 00101 Helsinki, Finland
K. Carslaw
School of Earth and Environment, University of Leeds, LS2 9JT, Leeds, UK
J. Curtius
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
U. Baltensperger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
M. Kulmala
Department of Physics, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Viewed
Total article views: 4,580 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Feb 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,809 | 1,594 | 177 | 4,580 | 161 | 160 |
- HTML: 2,809
- PDF: 1,594
- XML: 177
- Total: 4,580
- BibTeX: 161
- EndNote: 160
Total article views: 3,687 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Jul 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,344 | 1,209 | 134 | 3,687 | 122 | 120 |
- HTML: 2,344
- PDF: 1,209
- XML: 134
- Total: 3,687
- BibTeX: 122
- EndNote: 120
Total article views: 893 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Feb 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
465 | 385 | 43 | 893 | 39 | 40 |
- HTML: 465
- PDF: 385
- XML: 43
- Total: 893
- BibTeX: 39
- EndNote: 40
Cited
43 citations as recorded by crossref.
- The role of ions in new particle formation in the CLOUD chamber R. Wagner et al. 10.5194/acp-17-15181-2017
- Mass spectrometric measurements of ambient ions and estimation of gaseous sulfuric acid in the free troposphere and lowermost stratosphere during the CAFE-EU/BLUESKY campaign M. Zauner-Wieczorek et al. 10.5194/acp-22-11781-2022
- Look Up: Probing the Vertical Profile of New Particle Formation and Growth in the Planetary Boundary Layer With Models and Observations S. O’Donnell et al. 10.1029/2022JD037525
- Global atmospheric particle formation from CERN CLOUD measurements E. Dunne et al. 10.1126/science.aaf2649
- Terrestrial gamma-ray flashes initiated by positive leaders J. Dwyer 10.1103/PhysRevD.104.043012
- Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing R. Yin et al. 10.1021/acs.est.1c02701
- Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber J. Pfeifer et al. 10.5194/acp-23-6703-2023
- Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD M. Lawler et al. 10.5194/acp-16-13601-2016
- Causes and importance of new particle formation in the present‐day and preindustrial atmospheres H. Gordon et al. 10.1002/2017JD026844
- Thermodynamics of the formation of sulfuric acid dimers in the binary (H<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O) and ternary (H<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O–NH<sub>3</sub>) system A. Kürten et al. 10.5194/acp-15-10701-2015
- Measurement and Numerical Simulation of Discharge Characteristics in Air at Medium Frequency Voltages F. Seifert et al. 10.1109/TDEI.2021.009553
- Elimination of the nucleation barrier by bipolar charging I. Agranovski & I. Altman 10.1080/02786826.2024.2376843
- Turbulent electric current in the marine convective atmospheric boundary layer S. Anisimov et al. 10.1016/j.atmosres.2019.05.014
- Formation and growth of sub-3-nm aerosol particles in experimental chambers L. Dada et al. 10.1038/s41596-019-0274-z
- The ion–ion recombination coefficient α: comparison of temperature- and pressure-dependent parameterisations for the troposphere and stratosphere M. Zauner-Wieczorek et al. 10.5194/acp-22-12443-2022
- Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0 S. Ehrhart et al. 10.5194/gmd-11-4987-2018
- Ion attachment rates and collection forces on dust particles in a plasma sheath with finite ion inertia and mobility T. Ono et al. 10.1103/PhysRevE.102.063212
- Modeling of the electrical interaction between desert dust particles and the Earth’s atmosphere S. Mallios et al. 10.1016/j.jaerosci.2022.106044
- The role of H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub> anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest C. Yan et al. 10.5194/acp-18-13231-2018
- Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator D. Korzec et al. 10.3390/plasma4030029
- Primary ion diffusion charging and particle wall loss in smog chamber experiments N. Mahfouz & N. Donahue 10.1080/02786826.2020.1757032
- Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory J. Duplissy et al. 10.1002/2015JD023539
- The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-Spherical Particles R. Gopalakrishnan et al. 10.1080/02786826.2015.1109053
- Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid‐water nucleation S. Ehrhart et al. 10.1002/2015JD023723
- Atmospheric particle number size distribution and size-dependent formation rate and growth rate of neutral and charged new particles at a coastal site of eastern China X. Huang et al. 10.1016/j.atmosenv.2021.118899
- The performance of an electrical ionizer as a bipolar aerosol charger for charging ultrafine particles C. Saputra et al. 10.1080/02786826.2021.1976719
- A novel ion selective gas sensor based on pulsed atmospheric pressure chemical ionization and ion-ion-recombination A. Heptner et al. 10.1016/j.snb.2017.02.086
- A potential source of atmospheric sulfate from O<sub>2</sub><sup>−</sup>-induced SO<sub>2</sub> oxidation by ozone N. Tsona & L. Du 10.5194/acp-19-649-2019
- The charge reduction rate for multiply charged polymer ions via ion–ion recombination at atmospheric pressure T. Tamadate et al. 10.1039/D0CP03989F
- Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation C. Frege et al. 10.5194/acp-18-65-2018
- Enhanced Sulfate Formation from Gas-Phase SO2 Oxidation in Non–•OH–Radical Environments X. Lv et al. 10.3390/atmos15010064
- Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest J. Sulo et al. 10.5194/acp-22-15223-2022
- How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS) H. Manninen et al. 10.5194/amt-9-3577-2016
- From O2–-Initiated SO2 Oxidation to Sulfate Formation in the Gas Phase N. Tsona et al. 10.1021/acs.jpca.8b03381
- Calculation of the ion–ion recombination rate coefficient via a hybrid continuum-molecular dynamics approach T. Tamadate et al. 10.1063/1.5144772
- Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures A. Kürten et al. 10.1002/2015JD023908
- Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation S. Anisimov et al. 10.1016/j.atmosres.2020.105035
- Experimental characterization of particle wall-loss behaviors in UCR dual-90m 3 Teflon chambers C. Le et al. 10.1080/02786826.2023.2294056
- Production of neutral molecular clusters by controlled neutralization of mobility standards G. Steiner et al. 10.1080/02786826.2017.1328103
- Numerical modeling of air-vented parallel plate ionization chambers for ultra-high dose rate applications J. Paz-Martín et al. 10.1016/j.ejmp.2022.10.006
- Neutral gas pressure dependence of ion–ion mutual neutralization rate constants using Landau–Zener theory coupled with trajectory simulations Z. Liu et al. 10.1063/5.0168609
- Analysis of ion recombination in ionization chambers for tritium measurements Z. Chen et al. 10.1016/j.fusengdes.2015.09.014
- Ionic composition of a humid air plasma under ionizing radiation A. Filippov et al. 10.1134/S1063776117070020
41 citations as recorded by crossref.
- The role of ions in new particle formation in the CLOUD chamber R. Wagner et al. 10.5194/acp-17-15181-2017
- Mass spectrometric measurements of ambient ions and estimation of gaseous sulfuric acid in the free troposphere and lowermost stratosphere during the CAFE-EU/BLUESKY campaign M. Zauner-Wieczorek et al. 10.5194/acp-22-11781-2022
- Look Up: Probing the Vertical Profile of New Particle Formation and Growth in the Planetary Boundary Layer With Models and Observations S. O’Donnell et al. 10.1029/2022JD037525
- Global atmospheric particle formation from CERN CLOUD measurements E. Dunne et al. 10.1126/science.aaf2649
- Terrestrial gamma-ray flashes initiated by positive leaders J. Dwyer 10.1103/PhysRevD.104.043012
- Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing R. Yin et al. 10.1021/acs.est.1c02701
- Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber J. Pfeifer et al. 10.5194/acp-23-6703-2023
- Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD M. Lawler et al. 10.5194/acp-16-13601-2016
- Causes and importance of new particle formation in the present‐day and preindustrial atmospheres H. Gordon et al. 10.1002/2017JD026844
- Thermodynamics of the formation of sulfuric acid dimers in the binary (H<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O) and ternary (H<sub>2</sub>SO<sub>4</sub>–H<sub>2</sub>O–NH<sub>3</sub>) system A. Kürten et al. 10.5194/acp-15-10701-2015
- Measurement and Numerical Simulation of Discharge Characteristics in Air at Medium Frequency Voltages F. Seifert et al. 10.1109/TDEI.2021.009553
- Elimination of the nucleation barrier by bipolar charging I. Agranovski & I. Altman 10.1080/02786826.2024.2376843
- Turbulent electric current in the marine convective atmospheric boundary layer S. Anisimov et al. 10.1016/j.atmosres.2019.05.014
- Formation and growth of sub-3-nm aerosol particles in experimental chambers L. Dada et al. 10.1038/s41596-019-0274-z
- The ion–ion recombination coefficient α: comparison of temperature- and pressure-dependent parameterisations for the troposphere and stratosphere M. Zauner-Wieczorek et al. 10.5194/acp-22-12443-2022
- Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0 S. Ehrhart et al. 10.5194/gmd-11-4987-2018
- Ion attachment rates and collection forces on dust particles in a plasma sheath with finite ion inertia and mobility T. Ono et al. 10.1103/PhysRevE.102.063212
- Modeling of the electrical interaction between desert dust particles and the Earth’s atmosphere S. Mallios et al. 10.1016/j.jaerosci.2022.106044
- The role of H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub> anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest C. Yan et al. 10.5194/acp-18-13231-2018
- Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator D. Korzec et al. 10.3390/plasma4030029
- Primary ion diffusion charging and particle wall loss in smog chamber experiments N. Mahfouz & N. Donahue 10.1080/02786826.2020.1757032
- Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory J. Duplissy et al. 10.1002/2015JD023539
- The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-Spherical Particles R. Gopalakrishnan et al. 10.1080/02786826.2015.1109053
- Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid‐water nucleation S. Ehrhart et al. 10.1002/2015JD023723
- Atmospheric particle number size distribution and size-dependent formation rate and growth rate of neutral and charged new particles at a coastal site of eastern China X. Huang et al. 10.1016/j.atmosenv.2021.118899
- The performance of an electrical ionizer as a bipolar aerosol charger for charging ultrafine particles C. Saputra et al. 10.1080/02786826.2021.1976719
- A novel ion selective gas sensor based on pulsed atmospheric pressure chemical ionization and ion-ion-recombination A. Heptner et al. 10.1016/j.snb.2017.02.086
- A potential source of atmospheric sulfate from O<sub>2</sub><sup>−</sup>-induced SO<sub>2</sub> oxidation by ozone N. Tsona & L. Du 10.5194/acp-19-649-2019
- The charge reduction rate for multiply charged polymer ions via ion–ion recombination at atmospheric pressure T. Tamadate et al. 10.1039/D0CP03989F
- Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation C. Frege et al. 10.5194/acp-18-65-2018
- Enhanced Sulfate Formation from Gas-Phase SO2 Oxidation in Non–•OH–Radical Environments X. Lv et al. 10.3390/atmos15010064
- Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest J. Sulo et al. 10.5194/acp-22-15223-2022
- How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS) H. Manninen et al. 10.5194/amt-9-3577-2016
- From O2–-Initiated SO2 Oxidation to Sulfate Formation in the Gas Phase N. Tsona et al. 10.1021/acs.jpca.8b03381
- Calculation of the ion–ion recombination rate coefficient via a hybrid continuum-molecular dynamics approach T. Tamadate et al. 10.1063/1.5144772
- Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures A. Kürten et al. 10.1002/2015JD023908
- Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation S. Anisimov et al. 10.1016/j.atmosres.2020.105035
- Experimental characterization of particle wall-loss behaviors in UCR dual-90m 3 Teflon chambers C. Le et al. 10.1080/02786826.2023.2294056
- Production of neutral molecular clusters by controlled neutralization of mobility standards G. Steiner et al. 10.1080/02786826.2017.1328103
- Numerical modeling of air-vented parallel plate ionization chambers for ultra-high dose rate applications J. Paz-Martín et al. 10.1016/j.ejmp.2022.10.006
- Neutral gas pressure dependence of ion–ion mutual neutralization rate constants using Landau–Zener theory coupled with trajectory simulations Z. Liu et al. 10.1063/5.0168609
Saved (final revised paper)
Saved (final revised paper)
Latest update: 10 Sep 2024
Short summary
The ion-ion recombination coefficient was measured at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the CLOUD chamber at CERN.
We observed a strong dependency on temperature and on relative humidity, which has not been reported previously. No dependency of the ion-ion recombination coefficient on ozone concentration was observed and a weak variation with sulfur dioxide concentration was also observed.
The ion-ion recombination coefficient was measured at different temperatures, relative...
Special issue
Altmetrics
Final-revised paper
Preprint