Articles | Volume 15, issue 12
https://doi.org/10.5194/acp-15-6667-2015
https://doi.org/10.5194/acp-15-6667-2015
Research article
 | 
17 Jun 2015
Research article |  | 17 Jun 2015

Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

M. J. Alvarado, C. R. Lonsdale, R. J. Yokelson, S. K. Akagi, H. Coe, J. S. Craven, E. V. Fischer, G. R. McMeeking, J. H. Seinfeld, T. Soni, J. W. Taylor, D. R. Weise, and C. E. Wold

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Matthew Alvarado on behalf of the Authors (30 Apr 2015)  Author's response   Manuscript 
ED: Publish as is (25 May 2015) by James Roberts
AR by Matthew Alvarado on behalf of the Authors (26 May 2015)
Download
Short summary
Being able to understand and simulate the chemical evolution of biomass burning smoke plumes under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use an improved model of this chemistry to simulate the evolution of ozone and secondary organic aerosol within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 2009.
Altmetrics
Final-revised paper
Preprint