Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 11
Atmos. Chem. Phys., 15, 6087–6100, 2015
https://doi.org/10.5194/acp-15-6087-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 6087–6100, 2015
https://doi.org/10.5194/acp-15-6087-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Jun 2015

Research article | 04 Jun 2015

Photochemical processing of aqueous atmospheric brown carbon

R. Zhao et al.

Viewed

Total article views: 3,831 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,844 1,852 135 3,831 448 64 159
  • HTML: 1,844
  • PDF: 1,852
  • XML: 135
  • Total: 3,831
  • Supplement: 448
  • BibTeX: 64
  • EndNote: 159
Views and downloads (calculated since 30 Jan 2015)
Cumulative views and downloads (calculated since 30 Jan 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 05 Aug 2020
Publications Copernicus
Download
Short summary
Aqueous-phase photochemical decay of light absorbing organic compounds, or atmospheric brown carbon (BrC), is investigated in this study. The absorptive change of laboratory surrogates of BrC, as well as biofuel combustion samples, were monitored during photolysis and OH oxidation experiments. The major finding is the rapid change in the absorptivity of BrC during such photochemical processing. This change should be taken into account to evaluate the importance of BrC in the atmosphere.
Aqueous-phase photochemical decay of light absorbing organic compounds, or atmospheric brown...
Citation
Final-revised paper
Preprint