Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 11
Atmos. Chem. Phys., 15, 6087–6100, 2015
https://doi.org/10.5194/acp-15-6087-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 6087–6100, 2015
https://doi.org/10.5194/acp-15-6087-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Jun 2015

Research article | 04 Jun 2015

Photochemical processing of aqueous atmospheric brown carbon

R. Zhao et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ran Zhao on behalf of the Authors (13 May 2015)  Author's response    Manuscript
ED: Publish as is (13 May 2015) by Kostas Tsigaridis
Publications Copernicus
Download
Short summary
Aqueous-phase photochemical decay of light absorbing organic compounds, or atmospheric brown carbon (BrC), is investigated in this study. The absorptive change of laboratory surrogates of BrC, as well as biofuel combustion samples, were monitored during photolysis and OH oxidation experiments. The major finding is the rapid change in the absorptivity of BrC during such photochemical processing. This change should be taken into account to evaluate the importance of BrC in the atmosphere.
Aqueous-phase photochemical decay of light absorbing organic compounds, or atmospheric brown...
Citation