Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 15, issue 1
Atmos. Chem. Phys., 15, 447–493, 2015
https://doi.org/10.5194/acp-15-447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 447–493, 2015
https://doi.org/10.5194/acp-15-447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Jan 2015

Research article | 14 Jan 2015

Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

G. Ganbavale et al.

Viewed

Total article views: 2,494 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,233 1,058 203 2,494 58 59
  • HTML: 1,233
  • PDF: 1,058
  • XML: 203
  • Total: 2,494
  • BibTeX: 58
  • EndNote: 59
Views and downloads (calculated since 26 Jun 2014)
Cumulative views and downloads (calculated since 26 Jun 2014)

Cited

Saved (final revised paper)

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 24 Sep 2020
Publications Copernicus
Download
Short summary
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients implemented in the AIOMFAC group-contribution model. The AIOMFAC model with the improved parameterisation is applicable for a large variety of aqueous organic as well as water-free organic solutions of relevance for atmospheric aerosols. The new model parameters were determined based on published and new thermodynamic equilibrium data covering a temperature range from ~190 to 440 K.
This study presents a new, improved parameterisation of the temperature dependence of activity...
Citation
Altmetrics
Final-revised paper
Preprint