Articles | Volume 15, issue 6
Atmos. Chem. Phys., 15, 3277–3287, 2015
https://doi.org/10.5194/acp-15-3277-2015

Special issue: Haze-fog forecasts and near real time (NRT) data application...

Atmos. Chem. Phys., 15, 3277–3287, 2015
https://doi.org/10.5194/acp-15-3277-2015

Research article 23 Mar 2015

Research article | 23 Mar 2015

Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region – Part 2: Aerosols' radiative feedback effects

H. Wang et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (16 Feb 2015)  Author's response    Manuscript
ED: Publish as is (17 Feb 2015) by Xiao-Ye ZHANG
Short summary
Solar radiation reaching the ground decreases about 15% in Chinese 3JNS region and by 20 to 25% in the region with the highest AOD. Aerosol cools the PBL atmosphere but warms the atmosphere above it, leading to a more stable atmosphere that causes a decrease in turbulence diffusion of about 52% and in PBL height of about 33%; this results in a positive feedback on the PM2.5 concentration within the PBL and the surface as well as the haze formation.
Altmetrics
Final-revised paper
Preprint