Articles | Volume 15, issue 4
https://doi.org/10.5194/acp-15-1975-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-15-1975-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
P. R. Veres
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
C. Warneke
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
J. M. Roberts
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
J. B. Gilman
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
A. Koss
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
P. M. Edwards
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
now at: Department of Chemistry, University of York, York, UK
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
now at: Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
W. C. Kuster
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
Environment Canada, Science and Technology Branch, Toronto, ON, Canada
R. J. Wild
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
S. S. Brown
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
W. P. Dubé
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
B. M. Lerner
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
E. J. Williams
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
J. E. Johnson
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA
NOAA Pacific Marine Environmental Laboratory (PMEL), Seattle, WA, USA
P. K. Quinn
NOAA Pacific Marine Environmental Laboratory (PMEL), Seattle, WA, USA
T. S. Bates
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA
NOAA Pacific Marine Environmental Laboratory (PMEL), Seattle, WA, USA
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
P. L. Hayes
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
now at: Université de Montréal, Department of Chemistry, Montreal, QC, Canada
J. L. Jimenez
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
R. J. Weber
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
R. Zamora
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
B. Ervens
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
D. B. Millet
Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
B. Rappenglück
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
J. A. de Gouw
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA
Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
Viewed
Total article views: 6,663 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Sep 2014)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 4,215 | 2,299 | 149 | 6,663 | 630 | 156 | 209 |
- HTML: 4,215
- PDF: 2,299
- XML: 149
- Total: 6,663
- Supplement: 630
- BibTeX: 156
- EndNote: 209
Total article views: 5,499 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Feb 2015)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 3,564 | 1,812 | 123 | 5,499 | 448 | 146 | 201 |
- HTML: 3,564
- PDF: 1,812
- XML: 123
- Total: 5,499
- Supplement: 448
- BibTeX: 146
- EndNote: 201
Total article views: 1,164 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Sep 2014)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 651 | 487 | 26 | 1,164 | 10 | 8 |
- HTML: 651
- PDF: 487
- XML: 26
- Total: 1,164
- BibTeX: 10
- EndNote: 8
Latest update: 28 Nov 2025
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas...
Altmetrics
Final-revised paper
Preprint