Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 15, issue 4
Atmos. Chem. Phys., 15, 1669–1681, 2015
https://doi.org/10.5194/acp-15-1669-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 1669–1681, 2015
https://doi.org/10.5194/acp-15-1669-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Feb 2015

Research article | 18 Feb 2015

Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

Y.-F. Li2,1,3, W.-L. Ma1, and M. Yang2 Y.-F. Li et al.
  • 1International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
  • 2IJRC-PTS, Dalian Maritime University, Dalian 116026, China
  • 3IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada

Abstract. Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM −11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol–air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of −1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or ttTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.

Publications Copernicus
Download
Short summary
Gas/particle partitioning for polybrominated diphenyl ethers (PBDEs) in global air was investigated and an equation to predict the partition coefficients under steady state was developed, indicating that equilibrium is a special case of steady state when the non-equilibrium factor can be ignored. The results of the equation matched the worldwide monitoring data well, showing its superiority to the equilibrium-state-based equation that has been used in recent decades.
Gas/particle partitioning for polybrominated diphenyl ethers (PBDEs) in global air was...
Citation
Altmetrics
Final-revised paper
Preprint