Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 15, issue 20
Atmos. Chem. Phys., 15, 11909–11918, 2015
https://doi.org/10.5194/acp-15-11909-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 11909–11918, 2015
https://doi.org/10.5194/acp-15-11909-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Oct 2015

Research article | 27 Oct 2015

A method to retrieve super-thin cloud optical depth over ocean background with polarized sunlight

W. Sun et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Wenbo Sun on behalf of the Authors (09 Oct 2015)  Author's response    Manuscript
ED: Publish as is (17 Oct 2015) by Jianping Huang
Publications Copernicus
Download
Short summary
A method is reported for retrieving super-thin cloud optical depth with polarized light. It is found that near-backscatter p-polarized light is sensitive to clouds, but not to ocean conditions. Near-backscatter p-polarized intensity linearly relates to super-thin cloud optical depth. Based on these findings, super-thin cloud optical depth can be retrieved with little effect from surface reflection.
A method is reported for retrieving super-thin cloud optical depth with polarized light. It is...
Citation
Altmetrics
Final-revised paper
Preprint