Articles | Volume 13, issue 18
https://doi.org/10.5194/acp-13-9285-2013
https://doi.org/10.5194/acp-13-9285-2013
Research article
 | 
16 Sep 2013
Research article |  | 16 Sep 2013

A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield–Jackson Atlanta International Airport

J. Rissman, S. Arunachalam, M. Woody, J. J. West, T. BenDor, and F. S. Binkowski

Related authors

Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021,https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0)
Timothy Glotfelty, Diana Ramírez-Mejía, Jared Bowden, Adrian Ghilardi, and J. Jason West
Geosci. Model Dev., 14, 3215–3249, https://doi.org/10.5194/gmd-14-3215-2021,https://doi.org/10.5194/gmd-14-3215-2021, 2021
Short summary
A new method (M3Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution
Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller
Geosci. Model Dev., 12, 955–978, https://doi.org/10.5194/gmd-12-955-2019,https://doi.org/10.5194/gmd-12-955-2019, 2019
Short summary
Long-term trends in the ambient PM2.5- and O3-related mortality burdens in the United States under emission reductions from 1990 to 2010
Yuqiang Zhang, J. Jason West, Rohit Mathur, Jia Xing, Christian Hogrefe, Shawn J. Roselle, Jesse O. Bash, Jonathan E. Pleim, Chuen-Meei Gan, and David C. Wong
Atmos. Chem. Phys., 18, 15003–15016, https://doi.org/10.5194/acp-18-15003-2018,https://doi.org/10.5194/acp-18-15003-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024,https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024,https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024,https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024,https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary

Cited articles

Air New Zealand: Aircraft Statistics, available at: http://www.airnewzealand.co.nz/aircraft-statistics (last access: 22 June 2013), 2013.
Airports Council International: ACI releases World Airport Traffic Report 2009, available at: http://www.aci.aero/Media/aci/file/Press Releases/2010/PR_WATR2009_050810_FINAL.pdf (last access: 4 January 2013), 2010.
Airports Council International: Annual Traffic Data (Movements) for years 2002 and 2005, available at: http://www.aci.aero/Data-Centre/Annual-Traffic-Data/Movements/ (last access: 16 February 2013), 2013.
Arunachalam, S., Baek, B. H., Holland, A., Adelman, Z., Binkowski, F. S., Hanna, A., Thrasher, T., and Soucacos, P.: An Improved Method to Represent Aviation Emissions in Air Quality Modeling Systems and their Impacts on Air Quality, in: Proceedings of the 13 Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, January 2008, 135626, available at: https://ams.confex.com/ams/pdfpapers/135626.pdf (last access: 30 November 2012), 2008.
Arunachalam, S., Wang, B., Davis, N., Baek, B. H., and Levy, J. I.: Effect of Chemistry-Transport Model Scale and Resolution on Population Exposure to PM2.5 from Aircraft Emissions during Landing and Takeoff, Atmos. Environ., 45, 3294–3300, https://doi.org/10.1016/j.atmosenv.2011.03.029, 2011.
Download
Altmetrics
Final-revised paper
Preprint