Articles | Volume 13, issue 16
https://doi.org/10.5194/acp-13-8315-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-8315-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Pauci ex tanto numero: reduce redundancy in multi-model ensembles
E. Solazzo
European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
A. Riccio
Department of Applied Science, University of Naples "Parthenope", Napoli, Italy
I. Kioutsioukis
European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
Region of Central Macedonia, Thessaloniki, Greece
S. Galmarini
European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
Viewed
Total article views: 3,492 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,126 | 1,189 | 177 | 3,492 | 121 | 89 |
- HTML: 2,126
- PDF: 1,189
- XML: 177
- Total: 3,492
- BibTeX: 121
- EndNote: 89
Total article views: 2,494 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Aug 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,571 | 806 | 117 | 2,494 | 106 | 84 |
- HTML: 1,571
- PDF: 806
- XML: 117
- Total: 2,494
- BibTeX: 106
- EndNote: 84
Total article views: 998 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
555 | 383 | 60 | 998 | 15 | 5 |
- HTML: 555
- PDF: 383
- XML: 60
- Total: 998
- BibTeX: 15
- EndNote: 5
Cited
23 citations as recorded by crossref.
- Error apportionment for atmospheric chemistry-transport models – a new approach to model evaluation E. Solazzo & S. Galmarini 10.5194/acp-16-6263-2016
- Third international challenge to model the medium- to long-range transport of radioxenon to four Comprehensive Nuclear-Test-Ban Treaty monitoring stations C. Maurer et al. 10.1016/j.jenvrad.2022.106968
- The Fukushima- 137 Cs deposition case study: properties of the multi-model ensemble E. Solazzo & S. Galmarini 10.1016/j.jenvrad.2014.02.017
- A science-based use of ensembles of opportunities for assessment and scenario studies E. Solazzo & S. Galmarini 10.5194/acp-15-2535-2015
- NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System A. Stein et al. 10.1175/BAMS-D-14-00110.1
- Effect of Meteorological Variability on Fine Particulate Matter Simulations Over the Contiguous United States R. Kumar et al. 10.1029/2018JD029637
- A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea L. Fink et al. 10.5194/acp-23-10163-2023
- Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data I. Kioutsioukis et al. 10.5194/acp-16-15629-2016
- Evaluation of the GEM-AQ model in the context of the AQMEII Phase 1 project J. Struzewska et al. 10.5194/acp-15-3971-2015
- Application of linear minimum variance estimation to the multi-model ensemble of atmospheric radioactive Cs-137 with observations D. Goto et al. 10.5194/acp-20-3589-2020
- Comparison and Combination of Regional and Global Ensemble Prediction Systems for Probabilistic Predictions of Hub-Height Wind Speed C. Junk et al. 10.1175/WAF-D-15-0021.1
- Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3 U. Im et al. 10.5194/acp-18-8929-2018
- <i>De praeceptis ferendis</i>: good practice in multi-model ensembles I. Kioutsioukis & S. Galmarini 10.5194/acp-14-11791-2014
- Uncertainty quantification of atmospheric transport and dispersion modelling using ensembles for CTBT verification applications P. De Meutter & A. Delcloo 10.1016/j.jenvrad.2022.106918
- Comparing apples with apples: Using spatially distributed time series of monitoring data for model evaluation E. Solazzo & S. Galmarini 10.1016/j.atmosenv.2015.04.037
- Spatio-temporal learning in predicting ambient particulate matter concentration by multi-layer perceptron E. Chianese et al. 10.1016/j.ecoinf.2018.12.001
- Online coupled regional meteorology chemistry models in Europe: current status and prospects A. Baklanov et al. 10.5194/acp-14-317-2014
- Using STAX data to predict IMS radioxenon concentrations P. Eslinger et al. 10.1016/j.jenvrad.2022.106916
- Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations E. Chianese et al. 10.1016/j.ecolmodel.2018.07.019
- Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more? S. Galmarini et al. 10.5194/acp-18-8727-2018
- Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3 U. Im et al. 10.5194/acp-18-5967-2018
- Evaluation and uncertainty estimation of the impact of air quality modelling on crop yields and premature deaths using a multi-model ensemble E. Solazzo et al. 10.1016/j.scitotenv.2018.03.317
- Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone U. Im et al. 10.1016/j.atmosenv.2014.09.042
23 citations as recorded by crossref.
- Error apportionment for atmospheric chemistry-transport models – a new approach to model evaluation E. Solazzo & S. Galmarini 10.5194/acp-16-6263-2016
- Third international challenge to model the medium- to long-range transport of radioxenon to four Comprehensive Nuclear-Test-Ban Treaty monitoring stations C. Maurer et al. 10.1016/j.jenvrad.2022.106968
- The Fukushima- 137 Cs deposition case study: properties of the multi-model ensemble E. Solazzo & S. Galmarini 10.1016/j.jenvrad.2014.02.017
- A science-based use of ensembles of opportunities for assessment and scenario studies E. Solazzo & S. Galmarini 10.5194/acp-15-2535-2015
- NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System A. Stein et al. 10.1175/BAMS-D-14-00110.1
- Effect of Meteorological Variability on Fine Particulate Matter Simulations Over the Contiguous United States R. Kumar et al. 10.1029/2018JD029637
- A multimodel evaluation of the potential impact of shipping on particle species in the Mediterranean Sea L. Fink et al. 10.5194/acp-23-10163-2023
- Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data I. Kioutsioukis et al. 10.5194/acp-16-15629-2016
- Evaluation of the GEM-AQ model in the context of the AQMEII Phase 1 project J. Struzewska et al. 10.5194/acp-15-3971-2015
- Application of linear minimum variance estimation to the multi-model ensemble of atmospheric radioactive Cs-137 with observations D. Goto et al. 10.5194/acp-20-3589-2020
- Comparison and Combination of Regional and Global Ensemble Prediction Systems for Probabilistic Predictions of Hub-Height Wind Speed C. Junk et al. 10.1175/WAF-D-15-0021.1
- Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3 U. Im et al. 10.5194/acp-18-8929-2018
- <i>De praeceptis ferendis</i>: good practice in multi-model ensembles I. Kioutsioukis & S. Galmarini 10.5194/acp-14-11791-2014
- Uncertainty quantification of atmospheric transport and dispersion modelling using ensembles for CTBT verification applications P. De Meutter & A. Delcloo 10.1016/j.jenvrad.2022.106918
- Comparing apples with apples: Using spatially distributed time series of monitoring data for model evaluation E. Solazzo & S. Galmarini 10.1016/j.atmosenv.2015.04.037
- Spatio-temporal learning in predicting ambient particulate matter concentration by multi-layer perceptron E. Chianese et al. 10.1016/j.ecoinf.2018.12.001
- Online coupled regional meteorology chemistry models in Europe: current status and prospects A. Baklanov et al. 10.5194/acp-14-317-2014
- Using STAX data to predict IMS radioxenon concentrations P. Eslinger et al. 10.1016/j.jenvrad.2022.106916
- Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations E. Chianese et al. 10.1016/j.ecolmodel.2018.07.019
- Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more? S. Galmarini et al. 10.5194/acp-18-8727-2018
- Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3 U. Im et al. 10.5194/acp-18-5967-2018
- Evaluation and uncertainty estimation of the impact of air quality modelling on crop yields and premature deaths using a multi-model ensemble E. Solazzo et al. 10.1016/j.scitotenv.2018.03.317
- Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone U. Im et al. 10.1016/j.atmosenv.2014.09.042
Saved (final revised paper)
Saved (preprint)
Latest update: 15 Oct 2024
Altmetrics
Final-revised paper
Preprint