
Atmos. Chem. Phys., 13, 8315–8333, 2013
www.atmos-chem-phys.net/13/8315/2013/
doi:10.5194/acp-13-8315-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess
Nonlinear Processes 

in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics
O

pen A
ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Pauci ex tanto numero: reduce redundancy in multi-model
ensembles

E. Solazzo1, A. Riccio2, I. Kioutsioukis1,3, and S. Galmarini1

1European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
2Department of Applied Science, University of Naples “Parthenope”, Napoli, Italy
3Region of Central Macedonia, Thessaloniki, Greece

Correspondence to:S. Galmarini (stefano.galmarini@jrc.ec.europa.eu)

Received: 9 January 2013 – Published in Atmos. Chem. Phys. Discuss.: 21 February 2013
Revised: 9 July 2013 – Accepted: 10 July 2013 – Published: 22 August 2013

Abstract. We explicitly address the fundamental issue of
member diversity in multi-model ensembles. To date, no at-
tempts in this direction have been documented within the air
quality (AQ) community despite the extensive use of ensem-
bles in this field.Common biasesandredundancyare the two
issues directly deriving from lack of independence, under-
mining the significance of a multi-model ensemble, and are
the subject of this study. Shared, dependant biases among
models do not cancel out but will instead determine a biased
ensemble. Redundancy derives from having too large a por-
tion of common variance among the members of the ensem-
ble, producing overconfidence in the predictions and under-
estimation of the uncertainty. The two issues of common bi-
ases and redundancy are analysed in detail using the AQMEII
ensemble of AQ model results for four air pollutants in two
European regions. We show that models share large portions
of bias and variance, extending well beyond those induced by
common inputs. We make use of several techniques to further
show that subsets of models can explain the same amount
of variance as the full ensemble with the advantage of be-
ing poorly correlated. Selecting the members for generating
skilful, non-redundant ensembles from such subsets proved,
however, non-trivial. We propose and discuss various meth-
ods of member selection and rate the ensemble performance
they produce. In most cases, the full ensemble is outscored
by the reduced ones. We conclude that, although indepen-
dence of outputs may not always guarantee enhancement of
scores (but this depends upon the skill being investigated),
we discourage selecting the members of the ensemble sim-
ply on the basis of scores; that is, independence and skills
need to be considered disjointly.

1 Introduction

Geophysical modelling nowadays relies, among other tech-
niques, on ensemble methods to improve predictive skills, as-
sess performance and quantify uncertainties. This is also the
case for atmospheric sciences, where climate and air quality
(AQ) models are often treated as ensembles of an arbitrary
collection of models results belonging to the same family,
sharing similar structure and resolution (“ensembles of op-
portunity”, as defined e.g. by Tebaldi and Knutti, 2007). Just
as human beings normally consult a number of sources prior
to making a decision (see for example the “trillion dollar gar-
den party” analogy adopted by Knutti, 2010), the advantage
of treating the information from several sources into ensem-
bles relies on the fundamental assumption that information
coming from multiple sources allows for an estimation of the
quality of the former, in line with the “Principle of multiple
explanations” proposed by the Greek philosopher Epicurus
(341–270 BC), which says that for an optimal solution of a
concrete problem, we have to take into consideration all the
hypotheses that are consistent with the input data. One of the
main strengths of multiple estimations derives from the inde-
pendence of the sources. In fact, if the information came from
similar or dependant sources, the net result would be a bi-
ased and overconfident estimate. In our view, in multi-model
(MM) ensemble practices, the issue of member independence
has been often overlooked and taken for granted. However,
due to the fact that members of an ensemble arephenotyp-
ically similar (Potempski and Galmarini, 2009), caution is
required. To avoid ambiguous interpretations we define:
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– Independence, a formal property, when the joint proba-
bility distribution function (PDF) of two or more mod-
els is derived from the product of single PDFs (Cover
and Thomas, 2006). This is the rigorous definition of
independence, though the joint PDF is difficult to esti-
mate in practice.

– Uncorrelation, referring to the situation where model’s
outputs are linearly independent. This is the most-
applied proxy to independence. The outputs of in-
dependent models are uncorrelated, but uncorrelation
does not guarantee independence.

– Diversity,a qualitative property. Models are said to be
diverse when they are developed starting from differ-
ent conceptual basis and are based on different causal
assumptions. Their outputs (and errors) can be corre-
lated. Proving diversity has the same practical difficul-
ties to proving independence (in general models are the
numerical coding of fundamental physical processes,
and it is likely all models have at least this in com-
mon). Similarity is the opposite of diversity, and can
be defined when models are developed from the same
conceptual basis or share a number of elements that
make them similar. Outputs and errors of similar mod-
els are expected to be highly correlated.

– Redundancy, when two or more models, dependent
or not, have correlated outputs. It is more informative
than correlation as redundancy is related to the amount
of explained variance (Legendre and Legendre, 1998).
In the case of mutual correlations of model pairs, the
redundancy reduces to the coefficient of determination,
R2, the square of the correlation coefficient. Redun-
dancy is the primary effect of model similarity, and
applies to both model outputs and their errors.

The lack of independence of members in ensemble treat-
ment is not at all new. Despite the empirical evidence of the
superior performance of average of models in some cases
(Fiore et al., 2009; van Loon et al., 2007; Vautard et al.,
2009; Pierce et al., 2009; Galmarini et al., 2004; Potempski
et al., 2008), it is known that models share similar deficien-
cies. Several studies have demonstrated that similarities of
model errors are statistically significant beyond doubt, thus
questioning the effectiveness of “blindly” combining models
into ensembles. Nonetheless, the problem of member (and
error) similarities has received little attention by the climate
modelling community, as recently recognised by Pirtle et
al. (2010), and even less by the AQ community, where the
theoretical work by Potempski and Galmarini (2009) and the
attempts by Riccio et al. (2012) and Solazzo et al. (2012a)
remain the only studies, to the best of our knowledge, dedi-
cated to the issue.

Independence of models can be sought in the form of dif-
ferent structures (proportion of parameterisations shared by

the models), or, from an information science point of view,
as the possibility to express the combined error PDF in terms
of product of single PDFs (Abramowitz, 2010; Potempski
and Galmarini, 2009). Ideally, perturbation of model param-
eters and associated uncertainty on model output could serve
this scope, as suggested by Tebaldi and Knutti (2007), but
this is often impractical. The strategy common to the (few)
studies that directly investigate model diversity consists in
attributing model independence only from the analysis of the
output they produce. In particular, Potempski and Galmarini
(2009) showed that, by relaxing the condition of model inde-
pendence to that of modelassociativity, a robust theoretical
framework could be built from which precise mathematical
formulations could be drawn. Associativity is measured by
the covariance or by the correlation of pairs of model outputs.
However, caution is needed as “it is possible that two mod-
els could agree with respect to outputs despite being based
on different casual assumption” (Pirtle et al., 2010). Thus,
when looking at the correlation of model outputs as a metric
for defining independence, diverse models producing corre-
lated outputs would be erroneously considered as dependant.
Uncorrelation of the outputs is a necessary but insufficient
condition to guarantee independence. Furthermore, the sim-
ilarity of the results from two diverse models is valuable in-
formation for assessing model accuracy and uncertainty.

Models are intrinsically wrong due to their numerical na-
ture, imprecise input data and limited understanding of the
atmospheric chemical–physical processes. What is impor-
tant is that models have independent systematic errors for
the biases to cancel out when models are combined into en-
sembles. In the impossibility of an a priori assessment of
the independence of ensemble members, model bias is an
excellent parameter to investigate the ensemble member in-
terdependence. Shared biases determine the direction of the
agreement of models, making it therefore essential to select
models whose errors are independent and can average out.
Moreover, a MM ensemble for which all biases have the
same sign and value may give the false impression of ac-
curacy, which is often confused with precision: the agree-
ment of models to precisely predict the same (biased) result
is confused with accuracy of models, which implies homoge-
neously distributed biases around measurements (Potempski
and Galmarini, 2009).

To date, the link between ensemble accuracy and diversity
of members is not well defined. As noted by Abramowitz
et al. (2010) the accuracy of an ensemble of diverse mem-
bers is not in theory guaranteed to be higher than a redundant
ensemble, in light of the “error decomposition dilemma”, a
problem which has gathered massive attention in particular
in the information technology community for classification
problems (e.g. Brown et al., 2005). The mean square error
(MSE) (as a metric for accuracy) of an ensemble of models
can be decomposed into the sum of the variance (var), the
covariance (cov) and the bias:
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MSE=
var

M
+

(
1−

1

M

)
cov+ (bias)2

+ var(obs) , (1)

where obs are the observations andM is the size of the en-
semble (for semplicity in Eq. (1) we assume the same vari-
ance for all members). The error of the ensemble is sum of
two positive terms (variance and bias squared), and there is
no way to simply minimise the bias without enhancing the
variance: accuracy cannot be gained at the expense of preci-
sion. With the covariance being either positive or negative,
Eq. (1) has a most immediate minimum for negatively cor-
related members (assuming that bias and variance for these
models stay constant). Indeed, algorithms searching for neg-
ative correlation patterns have been proposed in the literature
(e.g. Liu and Xao, 1999) and are an active area of research in
the field of information science, though they are not the goal
of this study. Only in the case where the members of the en-
semble are all mutually positively correlated is the MSE min-
imised by a null covariance term, and accuracy and diversity
would be optimised simultaneously. But, in general, nega-
tively correlated (and thus dependant) members minimising
the error is an indication that diversity and accuracy need to
be assessed in isolation. In other words, we cannot expect
that an ensemble promoting diversity is highly skilled in ac-
curacy.

The Latin expressionpauci ex tanto numerois extracted
from the De Bello Gallico (The Gallic Wars, book 7, chap-
ter 88) by G. J. Caesar (100–44 BC), and refers to the battle
of the Roman army against the Gauls. The complete citation
reads “pauci ex tanto numero incolumes se in castra recipi-
ent” and that translates to “few [Gauls] from a large number
returned safely back to the camps”. We therefore more peace-
fully decided to take the first part of the citation to stress
the fact that only a few from a multitude of models will be
the ones that will make the ensemble result relevant and will
metaphorically survive in the end.

The paper is structured as follows. In Sect. 2 the scopes are
highlighted and the dataset and methodology are presented.
In Sect. 3 we introduce a metric for detecting similarities be-
yond the overarching ones, and use this metric to quantify
the level of redundancy of the dataset. Redundancy reduction
is achieved by applying several techniques (Sect. 4), which
serve the scope of identifying the minimum number of ele-
ments necessary to explain the variance of the observational
data. Once the dimension of the minimum set is established,
we apply a number of member selection criteria (Sect. 5).
The methods of member selection have the purposes of iden-
tifying the members (or the weights) that (i) have poorly cor-
related errors (thus non-redundant) and (ii) whose ensemble
mean is skilful in terms of accuracy and precision. Conclu-
sions are drawn in Sect. 6.

2 Scopes, data and method

To what extent does an ensemble of different models put to-
gether on the grounds of opportunity and convenience pro-
duce a better result? How can one quantify the information
in multi-model ensembles that is necessary and relevant? An-
swers to these questions were already anticipated by Potemp-
ski and Galmarini (2009), where the angle of attack was more
on whether the composition of the ensemble could be inves-
tigated a priori. A theoretical framework and conditions were
indeed identified but cannot be put in practice for all cases.
Solazzo et al. (2012a) clarified the necessity of a posterior
screening of the data and heuristically identified a possible
methodology. In this paper we analyse various techniques
available to address the following issues:

1. Quantification of ensemble redundancy: i.e. the mini-
mum set of members required to explain the variance
of the observations.

2. Selection of members to reduce the ensemble redun-
dancy: if two models, or their errors, are highly cor-
related, one can be expressed in terms of the other by
a simple scaling factor. If many redundant models are
combined together, there would be loss of valuable in-
formation due to dependant biases.

We investigate the correlation between errors produced by
AQ models run by 12 groups in the context of the Air Qual-
ity Modelling Evaluation International Initiative (AQMEII)
(Rao et al., 2011). For all of the analyses we use hourly time
series for the months of June-July-August (JJA) 2006 of the
gaseous species O3, CO, NO2 and SO2. We apply the anal-
ysis to two distinct regions of Europe, which have been sub-
jects of in-depth investigations in other AQMEII studies (So-
lazzo et al., 2012a, b, 2013; Vautard et al., 2012):

– Region 1 (−10, 5)◦ W, (42, 60)◦ N, including the UK,
France, northern Spain and Belgium;

– Region 2 (5, 24.5)◦ W, (46, 60)◦ N, continental Europe,
including Germany, Poland, Austria and the Czech Re-
public.

The modelled and observed time series have been spatially
averaged over region 1 and 2 defined above. The number of
receptors – by species – in each region is reported in Ta-
ble 1 and the participating models are summarised in Ta-
ble 2. Details about the model settings and operational eval-
uation against observational data can be found in Solazzo et
al. (2012a, b, 2013) and Vautard et al. (2012), with the ex-
ception of the GEM-AQ model (Côté et al., 1998; Kaminski
et al., 2008), which did not take part in the previous AQMEII
analyses. The AQMEII ensemble of models forms a typical
ensemble of opportunity, in which diverse AQ models and
meteorological drivers are applied; emission and boundary

www.atmos-chem-phys.net/13/8315/2013/ Atmos. Chem. Phys., 13, 8315–8333, 2013
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Table 1.Number of rural receptors by species and regions.

Europe O3 SO2 NO2 CO

Region1 199 34 56 23
Region2 225 131 136 54

conditions are, however, largely shared, making the distribu-
tion of model errors neither systematic nor random. The his-
tory of regional-scale modelling has also forcibly produced a
number of common elements to all the models, which should
be considered an a priori contaminating element of the en-
semble results.

Since an accurate estimation of multivariate a PDF is hard
to achieve due to the computational cost it entails even for
a small number of models (Peng et al., 2005), we decide to
focus on quantifying the amount of information two models
share measured by the redundancy, which can be computed
more easily. Given the output from two models,x andy or-
ganised as a two-column table – withcovxy their covariance,
and p(·) their joint PDF – the redundancy can be defined
either through the redundancy indexρI (x, x) (Stewart and
Love, 1968), which is a metric for quantifying the portion of
variance already being accounted for by other members of
the ensemble (Eq. 2), or by the mutual information among
modelsI (x, x) (Peng et al., 2005; Ding and Peng, 2005)
(Eq. 3):

ρI (x,y) =
trace(covxycov−1

yy covyx)

trace(covxx)
, (2)

I (x,y) =

∫ ∫
p(x,y) log

p(x,y)

p (x)p(y)
dxdy. (3)

Equation (2) is related to the prediction ofx by y by multi-
ple linear regression.ρI (x, y) is a weighted average of the
squared multiple correlation coefficient between all pairs of
variables ofx andy. It is a measure of the quality of the pre-
diction of x by y and represents the proportion of explained
variance in the regression ofx by y (see e.g. Youness and
Saporta, 2010). In the case ofx andy one-dimensional vec-
tors ρI returnsR2, the squared correlation coefficient. The
mutual information in Eq. (3) is more complex and involves
the PDFs of multivariate variables. In practical terms,I is
the level of repetition of two datasets, and the PDFs are com-
puted as the frequency of unique elements belonging to both
x andy. Details about the implementation of Eq. 3 are given
in Peng et al. (2005) and Yoon and Kim (2009).

3 A metric for model similarities and comparability of
errors

Common biases are difficult to detect, especially for AQ
models, where the variance of the noise can be comparable

with that of the signal (and particularly for low concentra-
tions). The AQMEII database (Galmarini et al., 2012) in-
cludes results from members sharing meteorological drivers,
emissions and chemical boundary conditions (Table 2). It
was proven that these input fields introduce systematic bi-
ases in the model results (Solazzo et al., 2012a, b). A simple
error metric would not be adequate to detect any type of un-
derlying commonality other than these overarching biases.
Therefore we need a metric that (a) explores hidden similar-
ities, i.e. those underlying common modules and parameters
in the model, and that (b) is robust enough to be used un-
der a number of scenarios. Having in mind that no wonder
metric exists, and that different metrics produce different re-
sults (Gleckler et al., 2008), we opted for the metricdm pro-
posed by Pennel and Reichler (2011) (hereafter referred to as
PR2011), which explores the biases of models and removes
from each model the dominating similarities, thus making
individual model errors more dissimilar and unveiling “hid-
den” trends that are masked by overarching commonalities.
Another choice would have been a metric accounting for the
variance as element of model similarity, as it is related to
model uncertainties. The variance, however, is more difficult
to apply in practice as it would require sensitivity model sim-
ulations (e.g. Garaud and Mallet, 2011).

Let us start by defining the normalised deviation of models
(mod) from observations (obs) as

ei,m,s =
modi,m,s− obsi,s

σs
, (4)

whereσs is the standard deviation of the observed chemical
speciess, i = 1, . . . ,N is the index of the time series, m is
the model index and s that of the species being considered
(O3, CO, NO2, SO2). The normalisation in Eq. (4) makes the
errors more comparable for different chemical species and
units. We now define the MM-error pattern (MME) as

MMEi,s =
1

M

M∑
m=1

ei,m,s, (5)

which contains the “bulk” of bias among models. To elimi-
nate the dominating model similarities, we remove the por-
tion of MME associated with each individual model error.
According to PR2011, the removal of the portion of MME
relevant to an individual model can be accomplished by cal-
culatingdm, the difference between the model error and the
weighted MME, with the weight being the correlation coeffi-
cient between them-th model error and the MME (Rm,MME):

dm,s=e∗
m,s−Rm,MME ·MME∗

s (6)

where the “*” indicatesstandardisedvectors, calculated, for
each time series, by subtracting the corresponding mean
value em and dividing by the standard deviationσem (we
have now get rid of the indexi for a more compact no-
tation) (details are given in PR2011). The standardisation

Atmos. Chem. Phys., 13, 8315–8333, 2013 www.atmos-chem-phys.net/13/8315/2013/
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Table 2.Participating models and features.

Model Grid
spacing
(km)

No. of vertical
layers

Emissions Chemical BC

Code Met AQ

DK1 MM5 DEHM 50 29 (top:
100 hPa)

Global emission
databases, EMEP

Satellite measurements

FR3 MM5 Polyphemus 24 9 (top: 12 km) Standarda Standard
HR1 PARLAM-PS EMEP 50 20 EMEP model From ECMWF and

forecasts
UK2 WRF CMAQ 18 34 (up to

50 hPa)
Standarda Standard

DE2 WRF WRF/Chem 22.5 36 (top:
22.5 km)

Standarda Standard

US4 WRF WRF/Chem 22.5 36 (top:
22.5 km)

Standarda Standard

FI1 ECMWF SILAM 24 9 (top: 10 km) Standard anthropogenic
In-house biogenic

Standard

FR4 MM5 Chimere 25 9 (up to
500 hPa)

MEGAN, standard Standard

PL1 GEM GEM-AQ 0.2
degreeb

28 (up to
10 mb)

Standard over AQMEII
region; global
EDGAR/GEIA over
the rest of the global
domain

Global variable grid
setup (no lateral
boundary conditions)

NL1 ECMWF Lotos-EUROS 25 4 (top: 25 km) Standarda Standard
DE1 COSMO Muscat 24 40 (top: 24 km) Standarda Standard
US3 MM5 CAMx 15 20 (top: 24 km) MEGAN, standard Standard
DE3 COSMO-CLM CMAQ 24 30 (up to

100 hPa)
Standarda Standard

a Standard anthropogenic emission and biogenic emission derived from meteorology (temperature and solar radiation) and land use distribution implemented in the
meteorological driver (Guenther et al., 1994; Simpson et al., 1995).
b Corresponding to 22.2 km at the domain centre.

serves the purposes of making the results for different species
inter-comparable (the correlation operator is bias and nor-
malisation independent), and makes the correlation and co-
variance interchangeable. As mentioned above, removal of
MME makes model errors more dissimilar and uncovers
“hidden” trends that are outweighed by overarching com-
monalities. For example, corr(e∗

FR3,O3
, e∗

FI1,O3
) = 0.73, while

corr(dFR3,O3, dFI1,O3) = 0.36. The subtraction of the corre-
lated portion of the bulk error from the individual error em-
phasises the real differences among models. On the other
hand, in the case of the same modelling system operated by
different groups such as DE2 and US4, the correlation among
e∗

i is approximately the same as that among thedi .
We provide two graphical examples of the efficacy ofdm

vs. em. The correlation between individual model error and
the MME (corr(ei , MME)), averaged over all models, is re-
ported in Fig. 1. The correlations are largely positive due
to commonalities, and also show dependence on the region
(correlations for SO2 are different over the two regions). In
Fig. 1 the correlation corr(di,dj ) is also shown, averaged

over all model pairs. The values for the curves for the two
regions are very similar and small, indicating that the effect
of MME has been largely mitigated. The removal of MME
also makes the model errors region independent, as shown
by the similar curves of corr(di,dj ). In Fig. 2 we report the
associativity tree (the dendrogram; see details in Sect. 4.4)
of cov(di,dj ) and cov(ei,ej ) for the joint time series of the
four pollutants in region 2. Whileem associations are based
on the species (model errors for each species are the most
correlated),dm associations are drastically diverse, and unex-
pected patterns emerge. Models are grouped by the bias un-
derlying modules and/or parameters strictly associated with
the physics and chemistry of a given compound. The diver-
sity for dm is higher with respect to theem dendrogram, and
the number of disjoint clusters is at least six (distance level
of ∼ 0.9), while fourem clusters were identified (at an even
smaller distance of∼ 0.7).

www.atmos-chem-phys.net/13/8315/2013/ Atmos. Chem. Phys., 13, 8315–8333, 2013
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Fig. 1. Correlation of errors (between individual model and MME
and betweend for all model pairs) for region 1 and region 2 of
Europe for the months of JJA of 2006.

Ensemble redundancy through error analysis

In Fig. 3 the covariance cov(di,dj )is shown for the species
of the European region 2 (plots for region 1 are omitted for
brevity). Mutual model covariance is indicated by the posi-
tioning of the model codes in black with respect to models
on the horizontal axis. Because the covariance matrix is sym-
metric, we display only half of it for clarity. The model in red
indicates the variance (cov(di,di)). In these plots we also re-
port the following:

– The redundancy measured byR2 (blue crosses), the
square of corr(di,dj ). R2 represents the amount of
variance already explained by the regressor model and,
for model pairs, corresponds to the redundancy index
ρI .

– The mutual informationI (vertical segments in or-
ange).

Because of the normalisation of the metricdm, the covariance
and redundancy can be expressed on the same scale, between
−1 and 1.

Depending on the pollutant, the mutual relationships
among members vary greatly, proving that for AQ models
many factors (chemistry and dispersion modules, meteorol-
ogy, grid spacing) weigh the final outcome, as was also found
to be the case for climate models (PR2011; Annan and Har-
greaves, 2010). Overall, errors do not seem to co-vary more
in the case of two instances of the same AQ model (DE3 and
UK2 for example) than for different combination of meteo-
dispersion models (FR4, DE1 for O3 and CO; HR1 and UK2
for SO2). The sharing of routines specifically designed for
certain pollutants and processes could offer a plausible ex-
planation. It is often the case that model developers borrow
entire model components as their use was demonstrated to
be an improved, or sometimes the only, solution for simulat-
ing a process. For example, the ISORROPIA module (Nenes

Fig. 2. Associativity trees for all models and species (European re-
gion 2) using(a) the cov(di ,dj ) and(b) the cov(ei ,ej ) as distance
matrix.

et al., 1998) for inorganic pollutants, the resistive scheme by
Zhang et al. (2001) for dry deposition and the scavenging pa-
rameterisation for wet deposition are all examples of shared
routines among the majority of the AQMEII models (see Ta-
ble 1 of Solazzo et al., 2012b).

Because the redundancy measured byR2 is simply the ra-
tio of the squared covariance to the variance, models with
a large spectrum of covariance are also the more redundant
(DK1 and DE1 for O3; US3 and US4 for CO; DK1 and DE3
for SO2; NL1, DE2, US4 for NO2). The redundancy mea-
sured by the mutual information is often in line with that
of R2, although in some cases higher values are estimated.
For example, DE2 and US4 (same models run by different
groups), as well as US3 for CO and NO2 and FR4 and PL1
for SO2, due toI being calculated as a raw frequency count,
whilst R derives from a regression analysis.

Annan and Hargreaves (2010) have suggested a technique
to assess the amount of spanned variability of the MM

Atmos. Chem. Phys., 13, 8315–8333, 2013 www.atmos-chem-phys.net/13/8315/2013/
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Fig. 3. cov(di ,dj ) by species for European region 2. In red the variance (cov(di ,dj )), in blue the range of redundancy (corr2(di ,dj )) and in
orange the range of redundancy measured by means of the mutual information (see text).The models in the square are those whose ensemble
mean produces the minimum MSE (see Sect. 5.5.1).

ensemble with respect to the observations, consisting in pro-
jecting the observation anomalies (the element-wise differ-
ence between the observations and their mean) onto the prin-
cipal components (PCs) of the covariance matrix of the de-
viation of the ensemble of models from the MM mean (the
element-wise difference between each model realisation and
the MM ensemble mean). When applying this method to the
AQMEII ensemble we find that just the first (or the first two
for O3) component already exceeds the observed variance.
When all components are taken into account, it results that
the MM mean for the EU region 1 (region 2) can explain as
much as 1.2 (1.7), 2 (4.8), 2.1 (9) and 7 (18) times of the
observed variability for O3, CO, SO2 and NO2, respectively
(the large difference between region 1 and 2 for NO2 and SO2
is due to the much smaller variance of the observed values of
these two compounds in region 2 (∼ 4 and 12 times smaller
for NO2 and SO2, respectively)). According to the definition
of Annan and Hargreaves (2010), the ensemble is therefore
wide. A wide ensemble can be interpreted also in terms of

lack of reliability with a rank histogram (Talagrand et al.,
1998) exhibiting a “central dome” pattern: the ensemble per-
forms poorly in predicting less frequent episodes (both high
and low concentrations) and lacks sharpness. Given the mas-
sive application of AQ models in regulatory applications and
the more and more stringent AQ targets, the detected over-
confidence can have considerable cost. Dealing with a wide
ensemble implies that there is a substantial amount of redun-
dant variability, i.e. variability already accounted for by other
models, which is often the case in an ensemble of opportu-
nity. One consequence of this is that not all information con-
tained in the ensemble is needed in principle. In particular,
that would be the case if the presence of redundant informa-
tion were to produce a deterioration of the ensemble result,
as investigated in the next section. One plausible explanation
is that the ensemble size, constrained by the available mem-
bers, is simply too large.
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4 Quantifying ensemble redundancy through
dimensionality

The immediate advantage of reducing the dimensionality by
discarding redundant information is the reduced computa-
tional costs and noise. Data mining and reduction are active
areas of research in various fields, from genetics to ecology
to machine learning. There exist a plethora of methods aim-
ing at detecting commonalities, most of which developed ad
hoc for specific applications, such as independent component
analysis (Kong et al., 2008); maximum relevance, minimum
redundancy (Peng at al., 2005); the methods reviewed by
Grömping et al. (2007); and others. However, it is seldom
the case that a method passes the barriers of its developing
community to be adopted in a field other than the original
one.

Here we explore some analytical dimension-reduction
techniques proposed in various permutations in the climate
modelling community, whose outcome is exclusively the di-
mension of the subspace. Selecting the members belonging
to that subspace is a different problem, and is addressed in
Sect. 5.

4.1 Eigenvalue methods

We calculated the effective number of models (also known
as the effective number of degrees of freedom) sufficient to
reproduce the variability of the full ensemble (the MM en-
semble generated with all available members) as

Meff=

(
M∑

k=1
λk)

2

M∑
k=1

λ2
k

, (7)

with λ eigenvalue of the corr(di,dj ) matrix. Theoretical
derivation of Eq. (7) can be found in Bretherton et al. (1999).
Under the assumption that the modelled and observed fields
are normally distributed, the fraction of the overall variance
expressed by the firstMeff eigenvalues is of 86 % (Eq. (8) of
Bretherton et al., 1999).

The sum over all eigenvalues at the nominator of Eq. (7)
expresses all the variability that is attainable in anM-
dimensional vectorial base of orthogonal vectors. By con-

struction,
M∑

k=1
λk = M, and only if all eigenvalues were equal

to unity would Eq. (7) returnMeff = M; that is, all direc-
tions are equally important. In reality there exist eigenvalues
that are larger than unity, and consequently others that are
less than unity, and since these are squared (denominator of
Eq. 7), the contribution of the former outweighs that of the
latter so thatMeff < M approximately in the amount of the
number of eigenvalues larger than unity (Guttman (1954) and
Kaiser (1960) indeed proposed to adopt this as a rule for de-
termining the number of factors to retain, supposing that it

Table 3. Meff from Eq. (6). Values have been calculated using
corr(di ,dj ) (corr(ei ,ej )).

Europe O3 SO2 NO2 CO

Region1 5.8 (2.3) 5.7 (1.3) 6.5 (2.2) 6.5 (1.3)
Region2 5.2 (2.5) 5.3 (3.2) 5.9 (2.5) 5.6 (1.9)

makes no sense to retain components that explain less vari-
ance than the original standardised variables). Thus, we can
replicate the variability of theM members by anMeff di-
mensional subset in a vectorial space whose base is gener-
ated by the eigenvectors of the leading eigenvalues. On the
other hand, if all error fields were similar, only one eigen-
value would be non-zero, andMeff = 1.

By applying Eq. (7) to the datasets of model errors
(corr(di,dj )), we find thatMeff is in the range 5 to 6.5. If
the MME term is retained (that is,Meff is calculated from
corr(ei,ej )), we find much lower values forMeff as conse-
quence of most of the similarity among models being ex-
pressed by the MME term (Table 3).

4.2 Principal components analysis (PCA)

Principal components analysis (PCA) (Jolliffe, 2002) is prob-
ably the most well known and widespread unsupervised
dimension-reduction technique. It is based on eigenanal-
ysis to select uncorrelated directions associated with the
largest variances. Relationships between PCA and cluster-
ing (Ding and He, 2004), redundancy (Jolliffe, 2002), multi-
dimensional scaling (Groenen and van de Velden, 2004) and
regression analysis (Jong and Kotz, 1999) have been docu-
mented, proving the versatility of this method. For example,
the ratio of the sum of leading eigenvalues to the sum of all
eigenvalues obtained by means of PCA is proportional to the
ratio of the regression sum of squares (SSreg) (explained or
signal variance) and the total sum of squares (SStot) (the total
variance) in regression analysis. This latter ratio is the coef-
ficient of determinationR2, the redundancy index (Jun et al.,
2008).

Equation (7) provides an analytical estimate of the dimen-
sionality of the subspace of models to produce the infor-
mation of the whole ensemble. Graphically, the “scree test”
(Cattell, 1966) is often applied in problems of dimension re-
duction. First we produce a plot of the number of dimensions
vs. quantities related to the amount of variability or indepen-
dence, measured by appropriate metrics, and then we use the
“elbow criterion” by seeking the point at which the curve
levels off to a plateau. To produce a scree plot from Eq. (7),
we look atMeff as a dependent variable of the number of
models. Curves are reported in Fig. 4 for the four pollutants
and the two European regions. The variability scale is cal-
culated as the cumulative variability. The two sets of curves
have been derived from corr(di,dj ) and from corr(ei,ej ). We
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Fig. 4. Meff (Eq. 7) as function of the number of models for EU
region 1 and region 2. The two sets of curves have been generated
from the corr(di ,dj ) (top curves) and the corr(ei ,ej ) (lower curves)
matrixes. The cumulative variability is colour coded. In grey is the
one-to-one line.

notice that in both sub-regionsMeff from corr(ei,ej ) is much
lower and that variability above 80 % is reached by the first
2–3 leading eigenvalues. As noted by PR2011, the concav-
ity of the curves over the number of models indicates that
the addition of more models to the ensemble is not compen-
sated by a linear increase in the overall information. This is
a straight consequence of commonalities among members:
chances that a new member shares features with an existing
one increases as the ensemble size does. This would not hap-
pen in the case of independent models.

4.3 Multi-dimensional scaling (MDS)

Another method to create a scree plot is to use a multi-
dimensional scaling (MDS) algorithm (Borg and Groenen,
2005) for determining the relationships between model er-
rors. MDS searches for a spatial configuration of the objects
such that the Euclidean distance (for which given two points
P(p1,p2 . . . ) andQ(q1,q2, . . . ), their distance is calculated

as
√∑

(pi − qi)
2)) among them matches their proximities

as closely as possible. Here, we use the corr(di,dj ) matrix
as proximities. The degree of correspondence between the
distances among points implied by MDS map and the in-
put matrix is measured by astressfunction, the minimisation
of which also provides information about the dimensionality
of the subspace covering the whole variability of the data.
Avoiding detailing too much, in MDS theory the Euclidean
distancesij between two rows of a matrixX is defined as

sij =

(
p∑

k=1

(
xik − xjk

)2)1/2

. (8)

The objective of MDS is to find the elements ofX minimis-
ing the difference betweensij anddij (the elements of the
proximity matrix corr(di,dj )):

σ 2(X) =

n∑
i=2

i−1∑
j=1

(dij − sij (X))2, (9)

where σ 2 is the raw stress function. Minimisation of the
stress function is not trivial, and thus numerical iterative
methods are employed (Borg and Groenen, 2005). By run-
ning the minimisation problem for different values ofp in
Eq. (9), we plot the stress against the dimension. Results for
the European region 2 are reported in Fig. 5 (results for re-
gion 1 are very similar and therefore not shown). The “el-
bow” in the scree plot indicates when more dimensions only
yield a negligible improvement in terms of stress. The trend
of the curves in Fig. 5 (similar for all pollutants) indicates
four as the number of independent components that best fit
the data, i.e. about one-third of the whole sample size.

4.4 Hierarchical clustering (HC)

Given a dataset ofM instancesX = {X1, X2, . . . , XM }, a
clustering algorithm generatesr disjoint clusters based on
a distance metric, represented as5 = {π1, π2, . . . , π r }.
Each clustering solutionπ i is a partition of the datasetX
into Ki (i = 1, . . . , r) disjoint clusters of instances, repre-
sented asπ i

= { ci
1, ci

2 . . . ci
K i }, where

⋃
k ci

k = X (Fern and
Brodley, 2004). A typical output of HC is a dendrogram or
associativity tree, where redundant models are grouped to-
gether and the level of similarity among groups is based on
the distance between the elements of the input matrix. Here,
we use the standard Euclidean distance and the corr(di,dj ) as
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function in the MDS methodology. The corr(di ,dj ) matrix is used
as similarity criteria.

input matrix. Applications of HC and dendrogram represen-
tation for AQ ensemble modelling are documented in Riccio
et al. (2012) and Solazzo et al. (2012a).

A fundamental challenge of the HC method is the high
sensitivity to the controlling options (the agglomerative
method, the distance metric, the number of clusters and
the cut-off distance) that need to be determined case by
case (Fern and Brodley, 2004). In particular, the cut-off (the
threshold similarity above which clusters are to be consid-
ered disjointed) determines the dimension of the subspace
of non-redundant models, and is typically decided by vi-
sual inspection of the dendrogram. After numerous tests, in
this study the unweighted pair-group average was selected as
the agglomeration method (Murtagh, 1984), with the cut-off
value set between 0.10 and 0.15 (1 being the maximum simi-
larity) for all pollutants in both regions, which produced five
disjointed clusters (Fig. 6) for all species. The cut-off value
is chosen by looking at the structure of the dendrogram: it is
convenient to break structures that are obviously disjointed,
and within each structure, avoid separating highly connected
groups, or groups of only two models. Common practice sug-
gests cutting the dendrogram at the height where the distance
from the next clustered groups is relatively large, and the re-
tained number of clusters is small compared to the original
number of models (Riccio et al., 2012). Looking at the den-
drogram for ozone, for example, the two main branches at the
top further split into two more at a relatively low similarity
level, suggesting a plausible way to proceed. At an∼ 10 to
15 % similarity level, five clusters are detected for all species
in both regions.

4.5 Comparing the different methods: discussion

Given the normalisation implied by the metricdm, we found
Meff to range between 5.2 (O3 in region 2) and 6, with only
NO2 and CO in region 1 requiring 6.5 components (Table 3).
Meff based ondm is between 1.5 (SO2 region 2) and 5 (CO

region 1) times higher than the values based onem (values in
parenthesis in Table 3). The variability ofMeff among species
depends on the heterogeneity of processes and sources within
the two regions, as well as on the receptors coverage. Despite
having removed the commonalities among models through
the MME, we still found a level of redundancy above 50 %,
beingMeff less than half of the size of sample.

Results of HC analysis indicates that at an∼ 15 % similar-
ity level, five clusters are detected. The between-class vari-
ance (weighted average of the mean distance of each cluster
and the mean distance of the whole dendrogram) detected by
the five components generated by the HC method is between
70 and 80 % of the total variance (depending on the variable),
which would be fully reproduced only in the case of a cut-off
level at the root of the dendrogram tree (one cluster only). On
the other hand, the within-class variance (average distance
within each cluster) is an estimate of the redundancy, as it is
proportional to the cluster-averaged coefficient of determina-
tion R2 (Moesa et al., 2005). This result is in line with that
obtained by applying PCA:Meff in that case explained 86 %
of the total variance (Sect. 4.2) with a slightly larger number
of models. Thus the two techniques are consistent for sim-
ilar amount of variance. Dimensionality through MDS and
the minimisation of the stress function has returned a num-
ber of components of four. In general though, MDS fit in-
dexes are descriptive and do not always provide an absolute
criterion for selecting the best dimensionality (Tinsley and
Brown, 2000).

To summarise, the ensemble of models is highly redundant
even after having removed the MM error. It is possible to re-
duce the full datasets of more than 50 %, down to 5–6 com-
ponents. As discussed next, this allows for reducing noise
and improving accuracy. The methods adopted give consis-
tent results, and the one based on Eq. (7) seems the most reli-
able although quantifying the redundancy of the bias proved
problem specific.

5 Identifying the members of the reduced ensembles

As many as
∑

i=1,m

(
M

i

)
subspaces with dimension smaller

thanm are identified by theM members. It is therefore dif-
ficult to univocally identify a subset of members systemat-
ically outscoring all the others for a large number of skills
(Garaud and Mallet, 2011). Ideally, once a skill or feature
is identified, one could select the best-performing ensemble
by extracting them best members. However, combinations
of individually good models do not necessarily produce a
good ensemble for a given feature: them best models are
not necessarily the bestm (Cover, 1974) (further discussed
in Sect. 5.5.1).

Countless methods for data reduction and member selec-
tion/weighting techniques have been developed by different
communities, testifying that available methods are “fit for

Atmos. Chem. Phys., 13, 8315–8333, 2013 www.atmos-chem-phys.net/13/8315/2013/
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Fig. 6. Hierarchical clustering of corr(di ,dj ) for EU region 2. The dotted horizontal line defines the level of similarity. Disjoint clusters are
identified by different colours.

purpose” rather than of general applicability. Here we ex-
ploit those and other methods for member selection and com-
pare the reduced ensembles they produce to the full ensemble
mean, taken as a benchmark. The techniques applied are as
follows:

– Hierarchical clustering (HC).

– Multi-dimensional scaling (MDS).

– Minimisation of the root-mean-square error (min-
RMSE).

– Principal component analysis (PCA);

– Correlation-adjusted (marginal) correlation (CAR).

Not all of the methods above take into account the redun-
dancy of members. The first two (HC and MDS) provide
ensembles of less redundant members; the minRMSE tech-
nique is a heuristic method based on the minimisation of
the error, and thus selection is skill driven (Solazzo et al.,
2012a; Riccio et al., 2012; Knutti et al., 2010); PCA provides
weights to the models along the directions of maximum vari-
ance; and finally, CAR is a score-based member selection

method developed by Zuber and Strimmer (2011) that is hy-
brid of marginal correlation and regression analysis, and is
shortly discussed in Sect. 5.5.1.

5.1 Hierarchical clustering (HC)

With reference to Fig. 6, members from each cluster are
selected according to the individual model scores for bias,
which is the metric underlyingdm. The model ranked best for
bias, among the models of each cluster, was the one selected
to represent the cluster. The selected members are reported in
Table 4. Other options have also been tested, as, for example,
selecting the model closer to the centre of each cluster, or the
models minimising the RMSE with respect to the cluster cen-
troid. However, the reduced ensembles generated with these
selection criteria were outperformed by that of members of
minimum bias (see Sect. 5.5.2), and are therefore not shown.

5.2 Multi-dimensional scaling (MDS)

In MDS the distance among models can be used as proxy
for independence, providing the visual aid needed for inter-
preting the grouping and selecting the most diverse mem-
ber. MDS transforms the correlation between members into

www.atmos-chem-phys.net/13/8315/2013/ Atmos. Chem. Phys., 13, 8315–8333, 2013
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Table 4.Representative models (corr(di ,dj ) for the months of JJA). The number in parenthesis is the redundancy indexρI for each ensemble.

EU region 1

MDS HC (min bias) MinRMSE CAR

O3 DE2;NL1;DK1;DE1 (0.27) FI1,FR3,FR4,UK2,US4 (0.12) FR4,PL1,US3,DE1,DK1 (0.53) PL1,US3,HR1,UK2 (0.07)
SO2 US4;US3;FI1;NL1 (0.29) FI1,FR3,DE1,HR1,US4 (0.22) HR1,DE1 (FI1, UK2) (0.007) FR3,DK1,FR4,UK2 (0.15)
CO DK1;FR3;HR1;US3 (0.25) FI1,FR3,DE1,DK1,HR1 (0.17) FI1,DE1 (NL1, US3) (0.02) FR4,UK2,FI1,US4 (0.29)
NO2 FR4;FR3;PL1;DK1 (0.27) FI1,FR3,DE1,DE2,HR1 (0.21) FI1,UK2,US4 (DE2) (0.13) UK2,FI1,DE3,HR1 (0.15)

EU region 2

O3 US4;US3;FI1;HR1 (0.31) FI1;FR4;UK2;US3;DE3 (0.30) FR4;US3;DE1 (FI1) (0.23) DE1,US3,PL1,DE2 (0.35)
SO2 DK1;UK2;US4;FR3 (0.29) DE3;US3;DE1;NL1;US4 (0.28) DE3,FR3,US3,US4,DE2 (0.47) DE3,DK1,UK2,NL1 (0.45)
CO US3;DK1;DE1;NL1 (0.60) FI1;DE1;NL1;PL1;HR1 (0.15) FI1,NL1,US3,HR1,DE1 (0.59) UK2,DE3,HR1,NL1 (0.20)
NO2 US4;FI1;FR4;HR1 (0.29) US3;DE1;PL1;DK1;DE2 (0.18) NL1,US4,HR1,DE2,DE3 (0.55) UK2,DE3,DE1,NL1 (0.08)

a distance, allowing a visual inspection of the mutual model
positioning into a two-dimensional plane. The distance
among members is the only information this methodology
offers. Application of MDS for member selection in climate
ensemble modelling can be found in Jun et al. (2008); the
model space of Abramowitz (2010) is an extension of MDS,
where the observations are treated as a de facto model. Fig-
ure 7 summarises the mutual model distance for the Euro-
pean region 2.

5.3 Minimum error (minRMSE)

Solazzo et al. (2012a) show that the ensemble mean min-
imising the RMSE has also superior skills with respect to
the full ensemble, both in terms of accuracy (error) and pre-
cision (variance). Application of this analysis yields (i) the
number of dimensions to retain (the dimension of the sub-
set) and (ii) the members to retain (the component of the
subset, reported in Table 4). Knutti et al. (2010) and Annan
and Hargreaves (2010) also explained the behaviour of the
curves of RMSE obtained by randomly sampling the ensem-
ble of members. In particular, the mean of the RMSE distri-
bution decays proportionally toσobs(1+ 1/m)0.5, as in the
present study, is an indication that observations and model
results are extracted from distributions with the same vari-
ance (the authors refer to this case as exchangeable or indis-
tinguishable ensembles). Moreover, the fact that the RMSE,
no matter how largeM is, can never reach zero is a conse-
quence of the variability affecting the observations (from the
error decomposition relationship, the variance of the obser-
vation is the lower bound for the error). Plot of RMSE for
O3 (region 2) of the mean of random subsets of the ensem-
ble members, plotted as function of subset size, is reported
in Figure 8 (for brevity, plots for the other species are omit-
ted). The curves show the maximum, mean and minimum of
RMSE. The dash-dotted curve decays asm−0.5 that would
be the trend if the model errors were independent (Knutti et
al., 2010; Annan and Hargreaves, 2010). We find a minimum
for m = 3, for which the RMSE is∼ 37 % smaller than the

full ensemble mean. Adding more members to the ensemble
increases the noise and deteriorates the accuracy. This would
not happen if the model errors were independent as the curve
in that case would decay monotonically.

5.4 Principal components analysis (PCA)

Although PCA cannot be applied for selecting individual, in-
dependent members, it can be nonetheless used to generate
an artificial time seriesmodPC obtained by projecting the
original data onto the leading PCs. This generates a weighted
ensemble, the weights being the projections of the model
components onto the eigenvectors associated with the lead-
ing m eigenvalues. We have applied PCA to the matrix of
covariance cov(di,dj ) to disclose redundancy patterns (see
Sect. 4.2). The reduced matrixdm,red is obtained by project-
ing dm onto PCm, the subspace of the firstm eigenvectors;
that is, if 5PCm denotes the projection operator on the sub-
space PCm , then

dm,red= PCm(dm). (10)

We have discussed the scree plot of Eq. (10) (Sect. 4.2) and
the dimensionality of the subspace PCm. Ideally now we
should be in a position to score the weighted ensemble ob-
tained by retainingm components. Getting the time series
back from Eq. (10) is not trivial though, since Eq. (6) is a
composite metric, and no similar applications of PCA have
been found in the literature. The reduced time series is given
by

modPC = σobs
(
σem

(
dm,red+ R · MME ∗

)
+ em

)
+ obs. (11)

Some assumptions are necessary, as, for example, how to ob-
tain the elements ofMME andem (the mean error of each
model) for the reduced space. The assumption we made con-
sists in projecting these quantities onto PCm too, as it is not
possible to associate them with their original time series.

The use of the observational data for recreating the time
series is a major shortcoming of this methodology, which

Atmos. Chem. Phys., 13, 8315–8333, 2013 www.atmos-chem-phys.net/13/8315/2013/



E. Solazzo et al.: Pauci ex tanto numero 8327

FI1 

FR3 

FR4 

NL1 

PL1 

UK2 

US3 

HR1 

DE1 

DE2 

DK1 

US4 

DE3 

-1 

-0.5 

0 

0.5 

1 

-1.5 -1 -0.5 0 0.5 1 1.5 

Ozone - EU region2 JJA 

FI1 

FR3 

FR4 

NL1 

PL1 

UK2 

US3 

HR1 

DE1 

DE2 

DK1 

US4 

DE3 

-1 

-0.5 

0 

0.5 

1 

-1.5 -1 -0.5 0 0.5 1 1.5 

SO2  EU Region 2 JJA 

FI1 

FR3 

FR4 

NL1 

PL1 
UK2 

US3 

HR1 

DE1 

DE2 

DK1 

US4 

DE3 

-1 

-0.5 

0 

0.5 

1 

-1.5 -1 -0.5 0 0.5 1 1.5 

NO2  EU Region 2 JJA 

FI1 

FR3 

FR4 

NL1 

PL1 

UK2 

US3 

HR1 

DE1 

DE2 

DK1 

US4 

DE3 

-1 

-0.5 

0 

0.5 

1 

-1.5 -1 -0.5 0 0.5 1 1.5 

CO EU Region 2 JJA 

Fig. 7.2-D MDS of corr(di ,dj ) for EU region 2. Models underlined are those selected to generate the reduced ensemble.
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Fig. 8. Curves of maximum, mean and minimum RMSE for ozone
in EU region 2. The curves are obtained by calculating the mean of
randomly sampled subsets of models as a function ofm, the dimen-
sion of the subsets. The theoretical decay that would occur if the
model errors were independent,∼ m−0.5, is also reported.

can be moderated in case of applications to forecasting. In
that case we could use a portion of the data to generate back
modPC, and another portion for verification of the forecast.
Current work is devoted to this aspect.

5.5 Comparing the different methods: discussion

5.5.1 Member selection

Members selected with MDS, HC, minRMSE and CAR
score are reported in Table 4, where the redundancy index
ρI of each reduced ensemble is also reported.

HC analysis of region 1 highlights that there is a group of
two models common to the four pollutants (FI1 and FR3),
and with the exception of O3, also DE1 and HR1 are in com-
mon. Furthermore, given the high level of similarity between
DE2 and US4, NO2 and SO2 are represented by the same
members (Table 4). The outputs of these models have there-
fore the least correlated bias, and in this sense can be con-
sidered non-redundant. For region 2 we found the selection
to be more sensitive to the pollutant, with only the pair US3
and DE1 common to the species of NO2 and SO2. The spatial
dependence of the bias is not entirely removed by the metric
dm, as members of region 1 and 2 are quite different, with
only three members in common for O3 (FI1, FR4, UK2) and
CO (FI1, DE1, HR1). Members selected by HC and MDS
are, in general, different.

The combination of minimum RMSE for region 1 is often
achieved by combining the members that individually per-
form among the best. For example, for NO2 and SO2 the
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two models whose mean produce the minimum RMSE are
ranked the highest for error. This is not the case for O3 and
CO. For the former, RMSE is minimised by the mean of the
first three ranked (FR4, PL1, US3) with the last (DE1) and
a middle ranked one (DK1), whilst for the latter the combi-
nation is composed by the best individual model (US4) with
two middle ranked ones (FI1 and UK2). It is well established
in information theory that good, larger feature sets do not
necessarily include the good, small sets. Mathematically, the
theorems by Elashoff et al. (1967), Cover (1976) and Tou-
ssaint (1971) had proven two important results on member
selection and individual score of the members; that is, the
best two models are not the two best and further that the best
single model need not be in the bestk. Therefore, the sim-
ple method of selecting just the best individual features may
prove unsuccessful, although the selection of members based
on performance might be justified in some cases (e.g. Mc-
Sweeney et al., 2012). Pierce et al. (2009), in the context of
climate modelling, showed that the mean of the best and that
of the worst models that could be built out a large ensemble
were statistically indistinguishable, and that the rank of the
ensemble did not reflect that of the individual models. Simi-
lar conclusions were drawn by Solazzo et al. (2012a) for O3
in Europe and North America.

For some species, the minimum error is obtained by com-
bining highly redundant members (Table 4), as, for exam-
ple, SO2 and NO2 in region 2, where the two instances of
WRF/Chem run by DE2 and US4 both participate to min-
imise the RMSE. As we can see from Fig. 4, these members
(in the red square) are often those maximising the variance
of the error. Because of the trade-off between bias, variance
and covariance (Eq. 1), and due to the presence of nega-
tively correlated members, the minimum RMSE is achieved
by combining redundant and less redundant models. For ex-
ample, DE3 errors are uncorrelated with the quintuplet of
models minimising MSE for SO2 in region 2, while FR3
(which also belongs to the quintuplet) is highly redundant
with respect to the others. Similar patterns are detected for
the other compounds too. This is an additional indication
that independence and skills need be investigated separately
(Abramowitz, 2010). Only in the case of unbiased and posi-
tively correlated models is the error minimised by a null co-
variance term and thus by uncorrelated models.

Two similar, highly redundant models are bound to score
identically under a variety of member selection techniques.
This could be a possible way to read the combination of re-
dundant members optimising the RMSE. We have applied
the CAR score recently developed by Zuber and Strimmer
(2011) to our dataset (available in the package “relaimpo”
for the R statistical software,http://www.r-project.org). This
method provides a ranking based on the partial correlation
between model and the observations, conditioned to all other
models. The CAR methodology is related to the amount of
explained variance, enforces the simultaneous selection of
highly correlated predictors and penalises variables correlat-

ing with opposite signs with the observations. Models with
a small CAR score contribute little to improve the prediction
error or to reduce the unexplained variance. For the species
O3 and NO2 of region 1, and O3, CO and NO2 of region
2, two models selected using the CAR score are in common
with the selection based on minimum RMSE (the first four
CAR-ranked models are reported in Table 4). Further to that,
the overall redundancy of the ensemble built by the mean of
the first four CAR-ranked models is, on some occasions, even
lower than that of HC selection (O3, SO2 and NO2 in region
1; CO and NO2 in region 2).

5.5.2 Skill scores

In Table 5 we report the scores of the reduced ensemble gen-
erated with the methods discussed above. The full-member
ensemble mean is also included as reference. With a few
exceptions, the reduced ensembles score better than, or as
well as, the full ensemble, especially in terms of variabil-
ity. Overall, the minRMSE selection seems to outperform the
other techniques for a number of pollutants in both regions.
It gives the best accuracy (lowest error) by definition, and
scores among the best also for variability. This is not surpris-
ing as accuracy implies precision (but the vice versa is not
true). Good performance does not seem to be related to the
redundancy of the ensembles as too low redundancy (SO2,
CO, NO2 of region 1) does not systematically correspond to
the best scores, enforcing the conclusion that diversity does
not necessarily optimise skills such as accuracy due to nega-
tively correlated members. This aspect deserves future inves-
tigations. HC, MDS and CAR methods do not consistently
score high, although performing best on some occasions.

The overwhelming strength of the weighted PCA ensem-
ble derives from having used the observations to rebuild the
time series, as discussed in Sect. 5.4. In general, though, one
of the main drawbacks of weighted ensembles is that they
are not robust enough to be applied under a variety of scenar-
ios (species, temporal, spatial), and in practical applications
MM mean is often preferred (Pierce et al., 2009; Knutti et al.,
2010).

5.6 Implications for AQ forecasting

We outline here some considerations about applying the tech-
niques of dimension reduction and member selection to peri-
ods of time other than those used for selecting the members.
It is in the ensemble forecasting applications that the low re-
dundancy of the bias plays the most important role: since ob-
servations are not available to provide evaluation, averaging
out of errors is the only means to avoid common and redun-
dant biases.

We thus ask whether any associativity among members
can be inferred in the case where observational data were not
available. In other words, knowing the associativity among
the errors, what can be deducted about the associativity of
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Table 5. Ensemble skills for regions 1 and 2 of Europe (JJA). (RMSE: root-mean-square error;R: Pearson correlation coefficient; NMB:
normalised mean bias; STDEV ratio: modelled to observed standard deviation). Results in bold are those for which the selected ensemble
scores better or as well as the full member ensemble (vice versa for the values in italic).

EU region 1 RMSE R NMB STDEV ratio

CO PCA 0.03 0.65 0.25 5.20
HC 0.06 0.36 −0.22 0.39
minRMSE
MDS
CAR
Full Ensemble

0.05
0.06
0.06
0.06

0.36
0.28
0.41
0.38

−0.09
−0.19
−0.29
−0.26

0.45
0.51
0.44
0.39

O3 PCA 2.5 0.99 0.04 0.99
HC 12.0 0.96 0.003 0.63
minRMSE
MDS
CAR
Full Ensemble

8.1
11.2
10.8
10.9

0.96
0.94
0.97
0.96

0.03
0.04
−0.05
0.002

0.81
0.70
0.71
0.67

SO2 PCA 0.9 0.96 0.12 1.12
HC 2.0 0.17 −0.07 0.57
minRMSE
MDS
CAR
Full Ensemble

1.9
2.1
2.2
2.2

0.27
0.16
<0.1
0.17

−0.11
0.12
−0.03
0.26

0.55
0.60
0.75
0.49

NO2 PCA 1.0 0.99 0.20 1.09
HC 3.5 0.68 −0.09 1.05
minRMSE
MDS
CAR
Full Ensemble

3.0
4.7
3.6
3.7

0.74
0.61
0.74
0.67

−0.09
0.20
−0.24
0.18

0.96
1.43
0.95
1.06

EU region 2 RMSE R NMB STDEV ratio

CO PCA 0.04 0.99 0.18 0.98
HC 0.05 0.48 −0.21 0.68
minRMSE
MDS
CAR
Full Ensemble

0.03
0.04
0.07
0.07

0.38
0.45
0.58
0.50

0.02
−0.17
−0.38
−0.35

0.83
0.67
0.57
0.57

O3 PCA 2.5 0.98 −0.005 0.99
HC 11.6 0.92 0.005 0.81
minRMSE
MDS
CAR
Full Ensemble

7.8
15.3
7.8
12.3

0.95
0.93
0.95
0.93

0.02
−0.14
0.02
−0.06

0.91
0.73
0.84
0.71

SO2 PCA 0.7 0.74 0.03 1.40
HC 0.7 0.73 −0.13 3.30
minRMSE
MDS
CAR
Full Ensemble

0.5
0.8
0.8
0.8

0.59
0.53
0.76
0.59

−0.07
−0.3
−0.4
−0.4

1.08
0.86
1.11
0.77

NO2 PCA 1.0 0.99 0.5 1.03
HC 3.4 0.66 0.05 2.12
minRMSE
MDS
CAR
Full Ensemble

1.9
3.6
2.2
2.5

0.70
0.67
0.75
0.59

−0.07
0.06
−0.26
−0.16

1.32
2.12
1.38
1.47
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the models underlining those errors? This problem is of di-
rect relevance to forecasting, and thus worth investigating.
The starting point is as usual the covariance matrix of the
errors cov(di,dj ). After some basic manipulation we get

cov(di,dj ) = cov(mi,mj ) − (cov(mi ,obs) + cov(mj ,obs)) (12)

+var(obs) = cov(mi,mj ) − (var(di) + var(dj )) + var(obs).

The model error covariance is strictly related to the the model
covariance, thus we cannot prescind from the observations.
All we can do is to infer some consideration about the co-
variance of the model errors for short periods of time ahead.
In practical terms, we first derive a reduced ensemble from
the matrix of errors cov(di,dj ). Then, if the trend of the error
does not change drastically for a few hours or days ahead, we
can deduce that the association among them does not change
either, and thus the reduced ensemble is still the best option.
Exploitation of reducing ensembles and member selection
for forecasting applications is a topical argument and a mat-
ter of ongoing work.

Recently, Galmarini et al. (2013) have investigated the
possibility of forecasting AQ starting from the combina-
tion of well-behaved spectral properties extracted from the
AQMEII ensemble. The results show that the approach out-
runs even the ensemble median. Further investigation will be
devoted to determining the correspondence between the re-
duced set obtained here and the properties of the ensemble
put together by Galmarini et al. (2012b) for the sake of iden-
tifying a deeper structure inside in the model behaviour and
performance.

6 Conclusions

The similarity of members in ensemble modelling is an out-
standing issue which has recently raised awareness in the en-
semble climate community but not in the AQ one. In this
study we explain the risks of combining models sharing
highly correlated bias into ensembles. We apply our analy-
sis to a high-resolution dataset covering two regions of EU
for 3 months. Along with observational data, we have treated
results of 13 AQ models for the air pollutants of CO, O3,
NO2 and SO2.

We have provided definitions for the concepts of indepen-
dence, diversity/similarity, redundancy of models and their
errors, which are often used interchangeably, giving raise
to misconception. Due to practical difficulties in comput-
ing independency, we used the redundancy instead, which
is simpler to handle and has the advantage of expressing the
amount of the accounted-for variance. Conceptually we be-
lieve this is very important, as it allows for univocal interpre-
tation of the results.

We started by applying the metricdm introduced in climate
modelling studies to our ensemble of regional-scale pollutant
concentrations.dm serves the scope of eliminating overarch-
ing commonalities among members and to explore hidden

similarities, i.e. those underlying common modules and pa-
rameters in the models. Some main results and considera-
tions are as follows:

1. The correlation among the majority of models re-
mained a constant feature across the two examined re-
gions, but varied from species to species. Generally it
was not possible to identify model similarities com-
mon to the four species. This implies a large spec-
trum of partially shared modules and parameterisa-
tions within the AQ modelling systems which are in-
voked depending on the species and on other inputs,
such as meteorology and emissions. Although most of
the model similarities encapsulated by the multi-model
ensemble mean error were removed by calculatingdm,
similarities among model errors were still found to be
significant.

2. By projecting the observational values into the eigen-
vectors of the anomalies of the models about the MM
ensemble, we found that the ensemble is wide; that
is, it accounts for more variability than that of the
observations. We concluded that the ensemble size,
constrained by the available members, was too large.
Given the massive application of AQ models in reg-
ulatory applications and the more and more stringent
AQ targets, the detected overconfidence can have great
cost. This, together with item 1 above, justify the need
for the analysis of the redundancy of the datasets.

3. We explored some dimension-reduction methods:

– Eigenvalue methods – number of effective mod-
els and principal component analysis.

– Clustering analysis and dendrogram representa-
tion.

– Multi-dimensional scaling and graphical repre-
sentation of model similarities as mutual distance
among models.

– The heuristic minRMSE, determining the size of
the ensemble of models whose mean minimise
the RMSE.

None of the aforementioned method is new; they are
all well-established techniques used, in many varieties,
in various branches of science. They have neither been
used before in an AQ ensemble context, nor compared.
We also introduced, where possible, the nexus between
these techniques and redundancy. We found that the
optimal size of an ensemble of poorly correlated mem-
bers is of about 4–6, implying that more than half of
the information of the full MM ensemble is redundant.

4. We continued the investigation by applying member-
selection techniques and scoring to the reduced en-
sembles against simple operational metrics, taking the
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scores of the full member ensemble mean as a bench-
mark. We proved that subsets of models outperform
the full ensemble. The minRMSE selection seems to
outperform the other techniques for a number of pollu-
tants in both regions. It gives the best accuracy (lowest
error) by definition, but scores among the best also for
variability. HC, MDS and CAR methods do not con-
sistently score high, although performing best in some
occasions.

5. The error being minimised by highly redundant mem-
bers does not justify, in our view, the use of the en-
semble of those members. Skills and diversity need to
be analysed in separation. This is because redundant
members might share common biases which will force
the agreement to be directed towards the same direc-
tion, with the risk of misjudging the results. These as-
pects are likely to be detected by a diagnostic type of
analysis (rather that by simple operational scores based
on distance metrics), and may often reveal more about
the causes of model errors and the processes respon-
sible for those errors (Dennis et al., 2010; Gleckler
et al., 2008). The combination of minimum error be-
ing achieved by a highly redundant subset of models is
due to the presence of negatively correlated members
whose covariance minimise the trade-off between vari-
ance, covariance and bias. Further investigations need
to be expanded to explain why highly redundant en-
sembles of negatively correlated models produce high
accuracy.

6. Application of PCA to the matrix of errors for the
purpose of data reduction has proved successful. By
contrast, generating the reduced time series (the time
series projected on the leading eigenvectors) is not
trivial, and requires the use of the observational data,
which masks the outcome of the procedure. As no ap-
plications of this sort have been found in the literature,
our intention is to devote future work to this aspect
which might be relevant in the realm of forecasting.

7. Finally, we have highlighted the steps for applying the
methods of dimension reduction and member selection
to a forecasting context.

We also believe the effort we spent to migrate some of the
knowledge and techniques developed in other scientific ar-
eas (especially computer science, genetics and climate mod-
elling) will contribute to raised awareness in the AQ com-
munity about the dependency of models and the meaning of
model agreement.
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