Articles | Volume 12, issue 20
https://doi.org/10.5194/acp-12-9799-2012
https://doi.org/10.5194/acp-12-9799-2012
Research article
 | 
29 Oct 2012
Research article |  | 29 Oct 2012

Cirrus and water vapor transport in the tropical tropopause layer – Part 1: A specific case modeling study

T. Dinh, D. R. Durran, and T. Ackerman

Related authors

Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer
T. Dinh, A. Podglajen, A. Hertzog, B. Legras, and R. Plougonven
Atmos. Chem. Phys., 16, 35–46, https://doi.org/10.5194/acp-16-35-2016,https://doi.org/10.5194/acp-16-35-2016, 2016
Cirrus and water vapour transport in the tropical tropopause layer – Part 2: Roles of ice nucleation and sedimentation, cloud dynamics, and moisture conditions
T. Dinh, S. Fueglistaler, D. Durran, and T. Ackerman
Atmos. Chem. Phys., 14, 12225–12236, https://doi.org/10.5194/acp-14-12225-2014,https://doi.org/10.5194/acp-14-12225-2014, 2014
A hybrid bin scheme to solve the condensation/evaporation equation using a cubic distribution function
T. Dinh and D. R. Durran
Atmos. Chem. Phys., 12, 1003–1011, https://doi.org/10.5194/acp-12-1003-2012,https://doi.org/10.5194/acp-12-1003-2012, 2012

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections
Mathilde Leroux and Vincent Noel
Atmos. Chem. Phys., 24, 6433–6454, https://doi.org/10.5194/acp-24-6433-2024,https://doi.org/10.5194/acp-24-6433-2024, 2024
Short summary
A statistical analysis of the occurrence of polar stratospheric ice clouds based on MIPAS satellite observations and the ERA5 reanalysis
Ling Zou, Reinhold Spang, Sabine Griessbach, Lars Hoffmann, Farahnaz Khosrawi, Rolf Müller, and Ines Tritscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-547,https://doi.org/10.5194/egusphere-2024-547, 2024
Short summary
Projected future changes in extreme precipitation over China under stratospheric aerosol intervention
Ou Wang, Ju Liang, Yuchen Gu, Jim M. Haywood, Ying Chen, Chenwei Fang, and Qingeng Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2904,https://doi.org/10.5194/egusphere-2023-2904, 2024
Short summary
A simple model to assess the impact of gravity waves on ice-crystal populations in the tropical tropopause layer
Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen
Atmos. Chem. Phys., 23, 6923–6939, https://doi.org/10.5194/acp-23-6923-2023,https://doi.org/10.5194/acp-23-6923-2023, 2023
Short summary
Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020,https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary

Cited articles

Bannon, P. R.: Theoretical foundations for models of moist convection, J. Atmos. Sci., 59, 1967–1982, 2002.
Blossey, P. N. and Durran, D. R.: Selective monotonicity preservation in scalar advection, J. Comp. Phys., 227, 5160–5183, https://doi.org/10.1016/j.jcp.2008.01.043, 2008.
Boehm, M. T. and Verlinde, J.: Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27, 19, https://doi.org/10.1029/2000GL011678, 2000.
Böhm, H. P.: A general equation for the terminal fall speed of solid hydrometeors, J. Atmos. Sci., 46, 2419–2427, 1989.
Bougeault, P.: A non-reflective upper boundary condition for limited-height hydrostatic models, Mon. Weather Rev., 111, 420–429, 1983.
Download
Altmetrics
Final-revised paper
Preprint