Articles | Volume 12, issue 20
https://doi.org/10.5194/acp-12-9653-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-12-9653-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Organics in environmental ices: sources, chemistry, and impacts
V. F. McNeill
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
A. M. Grannas
Department of Chemistry, Villanova University, Villanova, PA 19085, USA
J. P. D. Abbatt
Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
M. Ammann
Laboratory of Radio- and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
P. Ariya
Department of Chemistry and Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, PQ, H3A 2K6, Canada
T. Bartels-Rausch
Laboratory of Radio- and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
F. Domine
Takuvik International Laboratory, Université Laval and CNRS, Québec, QC, G1V 0A6, Canada
D. J. Donaldson
Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
M. I. Guzman
Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
D. Heger
Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
T. F. Kahan
Department of Chemistry, Syracuse University, Syracuse, NY, 12344, USA
P. Klán
Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
S. Masclin
Environmental Systems, University of California, Merced, Merced, CA 95343 USA
C. Toubin
Laboratoire PhLAM – UFR de Physique, Université Lille, 59655 Villeneuve D'Ascq Cedex, France
D. Voisin
LGGE/OSUG, Université Joseph Fourier, 38402 Saint Martin d'Hères, France
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the southwest Pacific Ocean
Increasing and decreasing trends of the atmospheric deposition of organochlorine compounds in European remote areas during the last decade
Drivers of diel and regional variations of halocarbon emissions from the tropical North East Atlantic
Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations
Sarah J. Lawson, Cliff S. Law, Mike J. Harvey, Thomas G. Bell, Carolyn F. Walker, Warren J. de Bruyn, and Eric S. Saltzman
Atmos. Chem. Phys., 20, 3061–3078, https://doi.org/10.5194/acp-20-3061-2020, https://doi.org/10.5194/acp-20-3061-2020, 2020
Short summary
Short summary
Methanethiol (MeSH) is a reduced sulfur gas originating from phytoplankton, with a global ocean source of ~ 17 % of dimethyl sulfide (DMS). It has been little studied and is rarely observed over the ocean. In this work, MeSH was measured at much higher levels than previously observed (3–36 % of parallel DMS mixing ratios). MeSH could be a significant source of atmospheric sulfur over productive regions of the ocean, but its distribution, and its atmospheric impact, requires more investigation.
L. Arellano, P. Fernández, R. Fonts, N. L. Rose, U. Nickus, H. Thies, E. Stuchlík, L. Camarero, J. Catalan, and J. O. Grimalt
Atmos. Chem. Phys., 15, 6069–6085, https://doi.org/10.5194/acp-15-6069-2015, https://doi.org/10.5194/acp-15-6069-2015, 2015
Short summary
Short summary
Despite the regulations in the use of polychlorobiphenyls (PCBs), an increase in atmospheric deposition fluxes of these pollutants in high-altitude mountain areas of Europe is observed for the period between 1996 and 2006. In contrast, atmospheric deposition of organochlorine pesticides showed a strong decrease. Volatilization from soils or melting glaciers related to climate change and the differences in physical–chemical properties between compounds may explain the observed temporal trend.
H. Hepach, B. Quack, F. Ziska, S. Fuhlbrügge, E. L. Atlas, K. Krüger, I. Peeken, and D. W. R. Wallace
Atmos. Chem. Phys., 14, 1255–1275, https://doi.org/10.5194/acp-14-1255-2014, https://doi.org/10.5194/acp-14-1255-2014, 2014
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
P. Sundarambal, R. Balasubramanian, P. Tkalich, and J. He
Atmos. Chem. Phys., 10, 11323–11336, https://doi.org/10.5194/acp-10-11323-2010, https://doi.org/10.5194/acp-10-11323-2010, 2010
Cited articles
Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction, Chem. Rev., 103, 4783–4800, 2003.
Abbatt, J. P. D., Bartels-Rausch, T., Ullerstam, M., and Ye, T. J.: Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature, Environ. Res. Lett., 3, 045008, https://doi.org/10.1088/1748-9326/3/4/045008, 2008.
Adamson, A. W. and Gast, A. P.: Physical chemistry of surfaces, 6th Ed., Wiley, New York, USA, 571–591, 1997.
Albert, M. R. and Shultz, E. F.: Snow and firn properties and air-snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, 2002.
Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A. M., Barbante, C., Boutron, C., and Ferrari, C.: Bacterial characterization of the snow cover at Spitzberg, Svalbard, FEMS Microbiol. Ecol., 59, 255–264, 2007.
Anastasio, C. and Robles, T.: Light absorption by soluble chemical species in Arctic and Antarctic snow, J. Geophys. Res., 112, D24304, https://doi.org/10.1029/2007JD008695, 2007.
Anderson, C. H., Dibb, J. E., Griffin, R. J., Hagler, G. S. W., and Bergin, M. H.: Atmospheric water-soluble organic carbon measurements at Summit, Greenland, Atmos. Environ., 42, 5612–5621, 2008.
Ardura, D., Kahan, T. F., and Donaldson, D. J.: Self-Association of Naphthalene at the Air-Ice Interface, J. Phys. Chem. A, 113, 7353–7359, 2009.
Arellano, L., Fernandez, P., Tatosova, J., Stuchlik, E., and Grimalt, J. O.: Long-range transported atmospheric pollutants in snowpacks accumulated at different altitudes in the Tatra Mountains (Slovakia), Environ. Sci. Technol., 45, 9268–9275, 2011.
Ariya, P. A., Domine, F., Kos, G., Amyot, M., Cote, V., Vali, H., Lauzier, T., Kuhs, W. F., Techmer, K., Heinrichs, T., and Mortazavi, R.: Snow – a photobiochemical exchange platform for volatile and semi-volatile organic compounds with the atmosphere, Environ. Chem., 8, 62–73, 2011.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological degradation of atmospheric organic compounds, Geophys. Res. Lett., 29, 2077, https://doi.org/10.1029/2002GL015637, 2002.
Bahr, S., Toubin, C., and Kempter, V.: Interaction of methanol with amorphous amorphous solid water, J. Chem. Phys., 13, 134712, 2008.
Bardgett, R. D., Richter, A., Bol, R., Garnett, M. H., Baumler, R., Xu, X., Lopez-Capel, E., Manning, D. C., Hobbs, P. J., Hartley, I. R., and Wanek, W.: Heterotrophic microbial communities use ancient carbon following glacial retreat, Biol. Lett., {3, }487–490, 2007.
Barret, M., Houdier, S., and Domine, F.: Formaldehyde in the Alaskan Arctic snowpack: Partitioning and physical processes involved in air-snow exchanges, J. Geophys. Res.-Atmos., {116, }D00R03, https://doi.org/10.1029/2011JD016038, 2011a.
Barret, M., Houdier, S., and Domine, F.: Thermodynamics of the Formaldehyde-Water and Formaldehyde-Ice Systems for Atmospheric Applications, Applications, J. Phys. Chem. A, 115, 307–317, 2011b.
Bartels-Rausch, T., Guimbaud, C., Gaggeler, H. W., and Ammann, M.: The partitioning of acetone to different types of ice and snow between 198 and 223 K, Geophys. Res. Lett., 31, L16110, https://doi.org/10.1029/2004GL020070, 2004.
Bartels-Rausch, T., Brigante, M., Elshorbany, Y. F., Ammann, M., D'Anna, B., George, C., Stemmler, K., Ndour, M., and Kleffman, J.: Humic acid in ice: Photo-enhanced conversion of nitrogen dioxide into nitrous acid, Atmos. Environ., {44, }5443–5450, 2010.
Bartels-Rausch, T., Krysztofiak, G., Bernhard, A., Schlaeppi, M., Schwikowski, M., and Ammann, M.: Photoinduced reduction of divalent mercury in ice by organic matter, Chemosphere, 82, 199–203, 2011.
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T., Thomas, J., Thomson, E. S., Abbatt, J., Ammann, M., R. Blackford, J., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzman, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M., Maus, S., Moussa, S., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselova, M., and Sodeau, J.: Relationship between snow microstructure and physical and chemical processes, in preparation, Atmos. Chem. Phys. Discuss., 2012.
Bauer, H., Giebl, H., Hitzenberger, R., Kasper-Giebl, A., Reischl, G., Zibuschka, F., and Puxbaum, H.: Airborne bacteria as cloud condensation nuclei, J. Geophys. Res.-Atmos., 108, 4658, https://doi.org/10.1029/2003JD003545, 2003.
Behr, P., Terziyski, A., and Zellner, R.: Acetone adsorption on ice surfaces in the temperature range $T=190$–220 K: Evidence for aging effects due to crystallographic changes of the adsorption sites, J. Phys. Chem. A, 110, 8098–8107, 2006.
Beine, H. J., Anastasio, C., Esposito, G., Patten, K., Wilkening, E., Domine, F., Voisin, D., Barret, M., Houdier, S., and Hall, S.: Soluble, light-absorbing species in snow at Barrow, Alaska, J. Geophys. Res., {116 }(D00R05), {116, }D00R05, https://doi.org/10.1029/2011JD016181, 2011.
Beine, H. J., Colussi, A. J., Amoroso, A., Esposito, G., Montagnoli, M., and Hoffman, M. R.: HONO emissions from snow surfaces, Environ. Res. Lett., 3, 045005, 2008.
Beine, H. J., Anastasio, C., Domine, F., Douglas, T., Barret, M., France, J., King, M., Hall, S., and Ullmann, K.: Soluble chromophores in marine snow, snow, seawater, sea ice, and frost flowers near Barrow, Alaska, J. Geophys. Res., {117}(D00R15), {117, }D00R15, https://doi.org/10.1029/2011JD016650, 2012.
Bej, A. K., Aislabie, J., and Atlas, R.Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. Informa Healthcare Publishing (Taylor and Francis/CRC Press). Boca Raton, FL, USA, 2010.
Bengtsson, G., Lindqvist, R., and Piwoni, M. D.: Sorption of Trace Organics to Colloidal Clays, Polymers, and Bacteria, Soil Sci. Soc. Am. J., 57, 1261–1270, 1993.
Betterton, E. A.: The Partitioning of Ketones Between the Gas and Aqueous Phases, Atmos. Environ., 25, 1473–1477, 1991.
Betterton, E. A. and Hoffmann, M. R.: Henry Law Constants of Some Environmentally Important Aldehydes, Environ. Sci. Technol., 22, 1415–1418, 1988.
Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A., and Kujawinski, E. B.: Molecular characterization of dissolved organic matter associated with the Greenland ice sheet, Geochim. Cosmochim. Acta, {74, }3768–3784, 2010.
Bizzotto, E. C., Villa, S., Vaj, C., and Vighi, M.: Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt, Chemosphere, 74, 924–930, 2009.
Blais, J. M., Schindler, D. W., Muir, D. C. G., Kimpe, L. E., Donaldk, D. B., and Rosenberg, B.: Accumulation of persistent organochlorine compounds in in mountains of Western Canada., Nature, 395, 585–588, 1998.
Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z., and Salmeron, M.: The The premelting of ice studied with photoelectron spectroscopy, J. Phys.: Cond. Matter, 14, L227–L233, 2002.
Bogdal, C., Nikolic, D., Luthi, M. P., Schenker, U., Scheringer, M., and Hungerbuhler, K.: Release of legacy pollutants from melting glaciers: Model evidence and conceptual understanding, Environ. Sci. Technol., 44, 4063–4069, 2010.
Boudries, H., Bottenheim, J. W., Guimbaud, C., Grannas, A. M., Shepson, P. B., Houdier, S., Perrier, S., and Domine, F.: Distribution and trends of oxygenated hydrocarbons in the high Arctic derived from measurements in the atmospheric boundary layer and interstitial snow air during the ALERT2000 field campaign, Atmos. Environ., 36, 2573–2583, 2002.
Bowman, J. S. and Deming, J. W.: Elevated bacterial abundance and exopolymers in saline frost flowers and implications for atmospheric chemistry and chemistry and microbial dispersal, Geophys. Res. Lett., 37, L13501, https://doi.org/10.1029/2010GL043020, 2010.
Buckeridge, K. M. and Grogan, P.: Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra, Appl. Soil Ecol., 39, 210–222, 2008.
Chazallon, B., Lebrun, N., Dhamlincourt, P., Toubin, C., and Focsa, C.: Micro-Raman investigations of the formaldehyde-ice system, J. Phys. Chem. B, 109, 432–439, 2005.
Cheng, J., Soetjipto, C., Hoffmann, M. R., and Colussi, A. J.: Confocal Fluorescence Microscopy of the Morphology and Composition of Interstitial Fluids in Freezing Electrolyte Solutions, J. Phys. Chem. Lett., 1, 374–378, 2010.
Cho, H., Shepson, P. B., Barrie, L. A., Cowin, J. P., and Zaveri, R.: NMR investigation of the quasi-brine layer in ice/brine mixtures, J. Phys. Chem. B, 106, 11226–11232, 2002.
Colussi, A. J. and Hoffmann, M. R.: In situ photolysis of deep ice core contaminants by Cerenkov radiation of cosmic origin, Geophys. Res. Lett., 30, 1195, https://doi.org/10.1029/2002GL016112, 2003.
Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010, 2010.
Curran, M. A. J., vas Ommen, T. D., Morgan, V. I., Phillips, K. L., and Palmer, A. S.: Ice core evidence for Antarctic sea ice decline since the 1950s, Science, 302, 1203–1206, 2003.
Desideri, P. G., Lepri, L., Udisti, R., Checchini, L., Del Bubba, M., Cini, R., and Stortini, A. M.: Analysis of organic compounds in Antarctic snow and their origin, Int. J. Environ. Anal. Chem., 71, 331–351, 1998.
Dibb, J. E. and Arsenault, M.: Shouldn't snowpacks be sources of monocarboxylic acids?, Atmos. Environ., 36, 2513–2522, 2002.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Dolinova, J., Ruzicka, R., Kurkova, R., Klanova, J., and Klan, P.: Oxidation of aromatic and aliphatic hydrocarbons by OH radicals photochemically generated from H2O2 in ice, Environ. Sci. Technol., 40, 7668–7674, 2006.
Domine, F. and Thibert, E.: Mechanism of incorporation of trace gases in ice grown from the gas phase, Geophys. Res. Lett., 23, 3627–3630, 1996.
Domine, F., Cabanes, A., and Legagneux, L.: Structure, microphysics, and surface area of the Arctic snowpack near Alert during the ALERT 2000 campaign, Atmos. Environ., 36, 2753–2765, 2002.
Domine, F. and Shepson, P. B.: Air-Snow Interactions and Atmospheric Chemistry, Science, {297, }1506–1510, 2002.
Domine, F., Sparapani, R., Ianniello, A., and Beine, H. J.: The origin of sea salt in snow on Arctic sea ice and in coastal regions, Atmos. Chem. Phys., 4, 2259–2271, https://doi.org/10.5194/acp-4-2259-2004, 2004.
Domine, F., Cincinelli, A., Bonnaud, E., Martellini, T., and Picaud, S.: Adsorption of phenanthrene on natural snow, Environ. Sci. Technol., 41, 6033–6038, 2007.
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, https://doi.org/10.5194/acp-8-171-2008, 2008.
Domine, F., Houdier, S., Taillandier, A.-S., and Simpson, W. R.: Acetaldehyde in the Alaskan subarctic snowpack, Atmos. Chem. Phys., 10, 919–929, https://doi.org/10.5194/acp-10-919-2010, 2010.
Domine, F., Gallet, J. C., Barret, M., Houdier, S., Voisin, D., Douglas, T., Blum, J. D., Beine, H. J., and Anastasio, C.: The specific surface area and chemical composition of diamond dust near Barrow, Alaska, J. Geophys. Res.-Atmos., 116, D00R06, https://doi.org/10.1029/2011JD016162, 2011.
Donaldson, D. J. and Anderson, D.: Adsorption of atmospheric gases at the air-water interface. 2. C-1-C-4 alcohols, acids, and acetone, J. Phys. Chem. A, 103, 871–876, 1999.
Douglas, T. A., Domine, F., Barret, M., Anastasio, C., Beine, H. J., Bottenheim, J., Grannas, A. M., Houdier, S., Netcheva, S., Rowland, G., Staebler, R., and Steffen, A.: Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface. Part 1: Chemical composition., J. Geophys. Res., 117, D00R09, https://doi.org/10.1029/2011JD016469, 2012.
Dubowski, Y. and Hoffmann, M. R.: Photochemical transformations in ice: Implications for the fate of chemical species, Geophys. Res. Lett., 27, 3321–3324, https://doi.org/10.1029/2000GL011701, 2000.
Ervens, B. and Volkamer, R.: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219–8244, https://doi.org/10.5194/acp-10-8219-2010, 2010.
Felip, M., Sattler, B., Psenner, R., and Catalan, J.: Highly-Active Microbial Communities in the Ice and Snow Cover of High-Mountain Lakes, Appl. Environ. Appl. Environ. Microbiol., 61, 2394–2401, 1995.
Finlay, J., Neff, J., Zimov, S., Davydova, A., and Davydov, S.: Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC, Geophys. Res. Lett., 33, L10401, https://doi.org/10.1029/2006GL025754, 2006.
Fisher, F. N., King, M. D., and Lee-Taylor, J.: Extinction of UV-visible radiation in wet midlatitude (maritime) snow: Implications for increased NOx emission, J. Geophys. Res., {110, }D21301, https://doi.org/10.1029/2005JD005963, 2005.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res.-Atmos., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced solar energy absorption by internally-mixed black carbon in snow grains, Atmos. Chem. Phys., 12, 4699–4721, https://doi.org/10.5194/acp-12-4699-2012, 2012.
France, J. L., King, M. D., Frey, M. M., Erbland, J., Picard, G., Preunkert, S., MacArthur, A., and Savarino, J.: Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen, Atmos. Chem. Phys., 11, 9787–9801, https://doi.org/10.5194/acp-11-9787-2011, 2011.
France, J. L., Reay, H. J., King, M. D., Voisin, D., Jacobi, H. W., Domine, F., Beine, H. J., Anastasio, C., and Lee-Taylor, J.: Hydroxyl radical and NOx production rates, black carbon concentrations, and light-absorbing impurities impurities in snow from field measurements, J. Geophys. Res., 117, D00R12, https://doi.org/10.1029/2011JD016639, 2012.
Fries, E., Sieg, K., Puttmann, W., Jaeschke, W., Winterhalter, R., Williams, J., and Moortgat, G. K.: Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow/ice at Jungfraujoch (46.6 degrees N, 8.0 degrees E) during CLACE 4 and 5, Sci. Total Environ., 391, 269-277, 2008.
Fries, E., Starokozhev, E., Haunold, W., Jaeschke, W., Mitra, S. K., Borrmann, S., and Schmidt, M. U.: Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth, Atmos. Environ., 41, 6156–6166, 2007.
Gabrieli, J., Vallelonga, P., Cozzi, G., Gabrielli, P., Gambaro, A., Sigl, M., Decet, F., Schwikowski, M., Gaeggeler, H., Boutron, C., Cescon, P., and Barbante, C.: Post 17th-Century Changes of European PAH Emissions Recorded in High-Altitude Alpine Snow and Ice, Environ. Sci. Technol., 44, 3260–3266, 2010.
Gao, S. S. and Abbatt, J. P. D.: Kinetics and mechanism of OH oxidation of small organic dicarboxylic acids in ice: Comparison to behavior in aqueous solution, J. Phys. Chem. A, 115, 9977–9986, 2011.
Gayley, R. I. and Ram, M.: Atmospheric dust in polar ice and the background aerosol, J. Geophys. Res., 90, 12921–12925, https://doi.org/10.1029/JD090iD07p12921, 1985.
Gertner, B. J. and Hynes, J. T.: Model molecular dynamics simulation of hydrochloric acid ionization at the surface of stratospheric ice, Faraday Discuss., 110, 301–322, 1998.
Girardet, C. and Toubin, C.: Molecular atmospheric pollutant adsorption on ice: a theoretical survey, Surf. Sci. Rep., 44, 159–238, 2001.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Grannas, A. M., Hockaday, W. C., Hatcher, P. G., Thompson, L. G., and Mosley-Thompson, E.: New revelations on the nature of organic matter in ice cores, J. Geophys. Res., 111, D04304, https://doi.org/10.1029/2005JD006251, 2006.
Grannas, A. M., Bausch, A. R., and Mahanna, K. M.: Enhanced aqueous photochemical reaction rates after freezing, J. Phys. Chem. A, 111, 11043–11049, 2007a.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007b.
Grannas, A. M., Bogdal, C., Hageman, K. J., Halsall, C., Harner, T., Hung, H., Kallenborn, R., Klán, P., Klánová, J., Macdonald, R. W., Meyer, T., and Wania, F.: The role of the global cryosphere in the fate of organic contaminants, Atmos. Chem. Phys. Discuss., 12, 16923–17000, https://doi.org/10.5194/acpd-12-16923-2012, 2012.
Guzman, M. I., Colussi, A. J., and Hoffmann, M. R.: Photogeneration of distant radical pairs in aqueous pyruvic acid glasses, J. Phys. Chem. A, 110, 931–935, 2006a.
Guzman, M. I., Colussi, A. J., and Hoffmann, M. R.: Photoinduced oligomerization of aqueous pyruvic acid, J. Phys. Chem. A, 110, 3619–3626, 2006b.
Guzman, M. I., Hildebrandt, L., Colussi, A. J., and Hoffmann, M. R.: Cooperative Hydration of Pyruvic Acid in Ice, J. Am. Chem. Soc., 128, 10621–10624, 2006c.
Guzman, M. I., Hoffmann, M. R., and Colussi, A. J.: Photolysis of pyruvic acid in ice: Possible relevance to CO and CO2 ice core record anomalies, J. Geophys. Res.-Atmos., 112, D10123, https://doi.org/10.1029/2006JD007886, 2007.
Haan, D. and Raynaud, D.: Ice core record of CO variations during the last two millenia: Atmospheric implications and chemical interactions within the Greenland ice, Tellus B, 50, 253–262, 1998.
Hageman, K. J., Hafner, W. D., Campbell, D. H., Jaffe, D. A., Landers, D. H., and Simonich, S. L.: Variability in pesticide deposition and source contributions to snowpack in Western U.S. national park, Environ. Sci. Technol., 44, 4452–4458, 2010.
Hagler, G. S. W., Bergin, M. H., Smith, E. A., and Dibb, J. E.: A summer time series of particulate carbon in the air and snow at Summit, Greenland, J. Geophys. Res.-Atmos., 112, D21309, https://doi.org/10.1029/2007jd008993, 2007.
Halde, R.: Concentration of impurities by progressive freezing, Water Res., 14, 575–580, 1980.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Haynes, D. R., Tro, N. J., and George, S. M.: Condensation and Evaporation of of H2O on Ice Surfaces, J. Phys. Chem., 96, 8502–8509, 1992.
Heger, D., Jirkovsky, J., and Klan, P.: Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy, J. Phys. Chem. A, 109, 6702–6709, 2005.
Heger, D. and Klan, P.: Interactions of organic molecules at grain boundaries in ice: A solvatochromic analysis, J. Photochem. Photobiol. A, 187, 275–284, 2007.
Heger, D., Klanova, J., and Klan, P.: Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing, J. Phys. Chem. B, 110, 1277–1287, 2006.
Heger, D., Nachtigallova, D., Surman, F., Krausko, J., Magyarova, B., Brumovsky, M., Rubes, M., Gladich, I., and Klan, P.: Self-organization of 1-methylnaphthalene on the surface of artificial snow grains: A combined experimental-computational approach, J. Phys. Chem. A, 115, 11412–11422, 2011.
Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., and Clarke, A. D.: Sources of light-absorbing aerosol in arctic snow and their seasonal variation, Atmos. Chem. Phys., 10, 10923–10938, https://doi.org/10.5194/acp-10-10923-2010, 2010.
Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Larson, T. V., and Clarke, A. D.: Source Attribution of Black Carbon in Arctic Snow, Environ. Sci. Technol., 43, 4016–4021, 2009.
Helmig, D., Apel, E., Blake, D., Ganzeveld, L., Lefer, B. L., Meinardi, S., and Swanson, A. L.: Release and uptake of volatile inorganic and organic gases through the snowpack at Niwot Ridge, Colorado, Biogeochemistry, 95, 167–183, 2009.
Herbert, B. M. J., Halsall, C. J., Jones, K. C., and Kallenborn, R.: Chemical interactions with snow: Understanding the behavior and fate of semi-volatile organic compounds in snow, Ecotoxicol. Environ. Safety 63, 3–16. 2006a.
Herbert, B. M. J., Halsall, C. J., Jones, K. C., and Kallenborn, R.: Field investigation into the diffusion of semi-volatile organic compounds into fresh and aged snow, Atmos. Environ. 40, 1385–1393. 2006b.
Hickman, Z. A. and Reid, B. J.: Increased microbial catabolic activity in diesel contaminated soil following addition of earthworms (Dendrobaena veneta) and compost, Soil Biol. Biochem., 40, 2970–2976, 2008.
Holmes, R. M., McClelland, J. W., Raymond, P. A., Frazer, B. B., Peterson, B. J., and Steiglitz, M.: Lability of DOC transported by Alaskan rivers to the Arctic Ocean, Geophys. Res. Lett., {35, }L03402, https://doi.org/10.1029/2007GL032837, 2008.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile organic matter to the marine environment, Nature, 462, 1044–1047, 2009. Houdier, S., Perrier, S., Domine, F., Cabanes, A., Legagneux, L., Grannas, A. M., Guimbaud, C., Shepson, P. B., Boudries, H., and Bottenheim, J. W.: Acetaldehyde and acetone in the Arctic snowpack during the ALERT2000 campaign. Snowpack composition, incorporation processes and atmospheric impact, Atmos. Environ., 36, 2609–2618, 2002.
Huthwelker, T., Ammann, M., and Peter, T.: The uptake of acidic gases on ice, ice, Chem. Rev., 106, 1375–1444, 2006.
Hutterli, M. A., McConnell, J. R., Bales, R. C., and Stewart, R. W.: Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (HCHO) preservation in snow to changing environmental conditions: Implications for ice core records, J. Geophys. Res.-Atmos., 108, 4023, https://doi.org/10.1029/2002JD002528, 2003.
Hutterli, M. A., Rothlisberger, R., and Bales, R. C.: Atmosphere-to-snow-to-firn transfer studies of HCHO at Summit, Greenland, Geophys. Res. Lett., 26, 1691–1694, 1999.
Jedlovszky, P., Hantal, G., Neurohr, K., Picaud, S., Hoang, P. N. M., von Hessberg, P., and Crowley, J. N.: Adsorption isotherm of formic acid on the surface of ice, as seen from experiments and grand canonical Monte Carlo simulation, J. Phys. Chem. C, 112, 8976–8987, 2008.
Johnson, B. J., Betterton, E. A., and Craig, D.: Henry's law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113–119, 1996.
Journet, E., Le Calve, S., and Mirabel, P.: Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K, J. Phys. Chem. B, 109, 14112–14117, 2005.
Kahan, T. F. and Donaldson, D. J.: Benzene Photolysis on Ice: Implications for the Fate of Organic Contaminants in the Winter, Environ. Sci. Technol., 44, 3819–3824, 2010.
Kahan, T. F. and Donaldson, D. J.: Heterogeneous ozonation kinetics of phenanthrene at the air-ice interface, Environ. Res. Lett., 3, 2008.
Kahan, T. F. and Donaldson, D. J.: Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces, J. Phys. Chem. A, 111, 1277–1285, 2007.
Kahan, T. F., Kwamena, N. O. A., and Donaldson, D. J.: Different photolysis kinetics at the surface of frozen freshwater vs. frozen salt solutions, Atmos. Chem. Phys., 10, 10917–10922, https://doi.org/10.5194/acp-10-10917-2010, 2010a.
Kahan, T. F., Zhao, R., and Donaldson, D. J.: Hydroxyl radical reactivity at the air-ice interface, Atmos. Chem. Phys., 10, 843–854, https://doi.org/10.5194/acp-10-843-2010, 2010b.
Kahan, T. F., Zhao, R., Jumaa, K. B., and Donaldson, D. J.: Anthracene Photolysis in Aqueous Solution and Ice: Photon Flux Dependence and Comparison Comparison of Kinetics in Bulk Ice and at the Air-Ice Interface, Environ. Sci. Technol., 44, 1302–1306, 2010c.
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., and Jacobi, H. W.: Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry, Geophys. Res. Lett., 31, L16114, https://doi.org/10.1029/2004GL020655, 2004.
Kang, J. H., Choi, S. D., Park, H., Baek, S. Y., Hong, S., and Chang, Y. S.: Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas, Sci. Total Environ., 408, 57–63, 2009.
Kawamura, K., Kasukabe, H., Yasui, O., and Barrie, L. A.: Production of dicarboxylic acids in the Arctic atmosphere at polar sunrise, Geophys. Res. Lett., 22 (10), 1253–1256, 1995.
Kawamura, K., Yokoyama, K., Fujii, Y., and Watanabe, O.: A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and alpha-dicarbonyls: A trend from Little Ice Age to the present (1540 to 1989 (1540 to 1989 A.D.), J. Geophys. Res., 106, 1331–1345, 2001.
Kemball, C. and Rideal, E. K.: The adsorption of vapours on mercury. 1. Non-polar substances, Proc. Roy. Soc. A, 187, 53–73, 1946.
Kerbrat, M., Huthwelker, T., Bartels-Rausch, T., Gaggeler, H. W., and Ammann, Ammann, M.: Co-adsorption of acetic acid and nitrous acid on ice, Phys. Chem. Chem. Phys., 12, 7194–7202, 2010.
Kerbrat, M., Le Calve, S., and Mirabel, P.: Uptake measurements of ethanol on ice surfaces and on supercooled aqueous solutions doped with nitric acid between 213 and 243 K, J. Phys. Chem. A, 111, 925–931, 2007.
Kim, K. and Choi, W.: Enhanced redox conversion of chromate and arsenite in ice, Environ. Sci. Technol., 45, 2202–2208, 2011.
Kim, K., Choi, W., Hoffmann, M. R., Yoon, H. I., and Park, B. K.: Photoreductive dissolution of iron oxides trapped in ice and its environmental implications, Environ. Sci. Technol., {44, }4142–4148, 2010.
Kippenberger, M., Winterhalter, R., and Moortgat, G. K.: Determination of higher carboxylic acids in snow samples using solid-phase extraction and LC/MS-TOF, Anal. Bioanal. Chem., 392, 1459–1470, 2008.
Klan, P., Ansorgova, A., Del Favero, D., and Holoubek, I.: Photochemistry of chlorobenzene in ice, Tetrahedron Lett., 41, 7785–7789, 2000.
Klan, P., Del Favero, D., Ansorgova, A., Klanova, J., and Holoubek, I.: Photodegradation of halobenzenes in water ice, Environ. Sci. Pollut. Res., 9, 195–200, 2001.
Klan, P. and Holoubek, I.: Ice (Photo)chemistry, Ice as a Medium for Long-term (Photo)chemical Transformations – Environmental Implications, Chemosphere, 46, 1201–1210, 2002.
Klan, P. and Wirz, J.: Photochemistry of Organic Compounds: From Concepts to Practice, Wiley, Chichester, UK, 183–223, 2009.
Klanova, J., Klan, P., Heger, D., and Holoubek, I.: Comparison of the effects of UV, H2O2/UV, and gamma-irradiation processes on frozen and liquid water solutions of monochlorophenols, Photochem. Photobiol. Sci., 2, 1023–1031, 2003a.
Klanova, J., Klan, P., Nosek, J., and Holoubek, I.: Environmental ice photochemistry: Monochlorophenols, Environ. Sci. Technol., 37, 1568–1574, 2003b.
Kos, G. and Ariya, P. A.: Volatile organic compounds in snow in the Quebec-Windsor Corridor, J. Geophys. Res.-Atmos., {115}(D01302), https://doi.org/10.1029/2009JD012391, 2010.
Krepelova, A., Newberg, J. T., Huthwelker, T., Bluhm, H., and Ammann, M.: The nature of nitrate at the ice surface studied by XPS and NEXAFS, Phys. Chem. Chem. Phys.,{ 12}, 8870–8880, 2010.
Kuo, M. H., Moussa, S. G., and McNeill, V. F.: Modeling interfacial liquid layers on environmental ices, Atmos. Chem. Phys., 11, 9971–9982, https://doi.org/10.5194/acp-11-9971-2011, 2011.
Kurkova, R., Ray, D., Nachtigallova, D., and Klan, P.: Chemistry of Small Organic Molecules on Snow Grains: The Applicability of Artificial Snow for Environmental Studies, Environ. Sci. Technol., 45, 3430–3436, 2011.
Lacorte, S., Quintana, J., Tauler, R., Ventura, F., Tovar-Sanchez, A., and Duarte, C. M.: Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry, J. Chromatography A, 1216, 8581–8589, 2009.
Le Borgne, S., Paniagua, D., and Vazquez-Duhalt, R.: Biodegradation of organic pollutants by halophilic bacteria and archaea, J. Molec. Microbiol. Biotech., 15, 74–92, 2008.
Lee, E., Park, H., and Cho, K.-S.: Characterization of methane, benzene, and toluene-oxidizing consortia enriched from landfill and riparian wetland soils, J. Haz. Mat., {184, }313–320, 2010.
Lee-Taylor, J. and Madronich, S.: Calculation of actinic fluxes with a coupled atmosphere-snow radiative transfer model, J. Geophys. Res., {107 }(4796), https://doi.org/10.1029/2002JD002084, 2002.
Legrand, M. and Deangelis, M.: Origins and variations of light carboxylic acids in polar precipication, J. Geophys. Res.-Atmos., 100, 1445–1462, 1995.
Legrand, M., Preunkert, S., Schock, M., Cerqueira, M., Kasper-Giebl, A., Afonso, J., Pio, C., Gelencser, A., and Dombrowski-Etchevers, L.: Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores, J. Geophys. Res.-Atmos., 112, D23S11, https://doi.org/10.1029/2006JD008080, 2007.
Lei, Y. D. and Wania, F.: Is rain or snow a more efficient scavenger of organic chemicals?, Atmos. Environ., 38, 3557–3571, 2004.
Lewis, G. N., Goldschmid, O., Magel, T. T., and Bigeleisen, J.: Dimeric and other forms of methylene blue absorption and fluorescence of the pure monomer, J. Am. Chem. Soc., {65, }1150–1154, 1943.
Li, Q., Wang, N., Wu, X., Pu, J., He, J., and Zhang, C.: Sources and distribution of polycyclic aromatic hydrocarbons of different glaciers over the Tibetan Plateau, Sci. China-Earth Sci., 54, 1189–1198, 2011.
Liyana-Arachchi, T. P., Valsaraj, K. T., and Hung, F. R.: Molecular simulation study of the adsorption of naphthalene and ozone on atmospheric air/ice interfaces, J. Phys. Chem. A, {115, }9226–9236, 2011.
Lohmann, U. and Leck, C.: Importance of submicron surface-active organic aerosols for pristine Arctic clouds, Tellus B, 57, 261–268, 2005.
Mabilia, R., Di Palo, V., Cassardo, C., Ciuchini, C., Pasini, A., and Possanzini, M.: Measurements of lower carbonyls and hydrocarbons at Ny-Alesund, svalbard, Ann. Chim., 97, 1027–1037, 2007.
Matykiewiczova, N., Klanova, J., and Klan, P.: Photochemical degradation of PCBs in snow, Environ. Sci. Technol., 41, 8308–8314, 2007a.
Matykiewiczova, N., Kurkova, R., Klanova, J., and Klan, P.: Photochemically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice, J. Photochem. Photobiol. A, 187, 24–32, 2007b.
McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing, Science, 317, 1381–1384, 2007.
McNeill, V. F., Geiger, F. M., Loerting, T., Trout, B. L., and Molina, M. J.: The Interaction of Hydrogen Chloride with Ice Surfaces: The Effects of Grain Size, Surface
Roughness, and Surface Disorder, J. Phys. Chem. A, Roughness, and Surface Disorder, J. Phys. Chem. A, 111, 6274–6284, 2007.
Roughness, and Surface Disorder, J. Phys. Chem. A, Roughness, and Surface Disorder, J. Phys. Chem. A, 111, 6274–6284, 2007.
McNeill, V. F., Loerting, T., Geiger, F. M., Trout, B. L., and Molina, M. J.: Hydrogen chloride-induced surface disordering on ice, Proc. Natl. Acad. Sci. USA, 103, 9422–9427, 2006.
Meyer, T., Duan, L. Y., Muradi, I., and Wania, F.: Organic contaminant release from melting snow. 1. Influence of chemical partitioning, Environ. Sci. Technol., 43, 657–662, 2011a.
Meyer, T., Lei, Y. D., and Wania, F.: Transport of polycyclic aromatic hydrocarbons and pesticides during snowmelt within an urban watershed, Water Res., 45, 1147–1156, 2011b.
Meyer, T. and Wania, F.: Organic contaminant amplification during snowmelt, Water Res., 42, 1847–1865, 2008.
Meyer, T. and Wania, F.: Modeling the elution of organic chemicals from a melting homogeneous snow pack, Water Res., 45, 3627–3637, 2011.
Mmereki, B. T., Hicks, J. M., and Donaldson, D. J.: Adsorption of atmospheric gases at the air-water interface. 3: methylamines J. Phys. Chem A, 104, 10789–10793, 2000.
Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of Henry Law Constants for A Suite of Naturally-Occurring Halogenated Methanes in Seawater, Chemosphere, 30, 1183–1191, 1995.
Mortazavi, R., Hayes, C. T., and Ariya, P. A.: Ice nucleation activity of bacteria isolated from snow compared with organic and inorganic substrates, Environ. Chem., 5, 373–381, 2008.
Mortazavi, R., Kos, G., Kanthaswamy, V., and Ariya, P. A.: Biomaterials in Arctic, submitted, 2012.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131, 1539–1565, 2005.
Muyzer, G. and van der Kraan, G. M.: Bacteria from hydrocarbon seep areas growing on short-chain alkanes, Trends Microbiol., 16, 138–141, 2008.
Norman, L., Thomas, D. N., Stedmon, C. A., Granskog, M. A., Papadimitriou, S., Krapp, R. H., Meiners, K. M., Lannuzel, D., van der Merwe, P., and Dieckmann, G. S.: The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice, Deep-Sea Res. II, 58, 1075–1091, 2011.
Noziere, B., Dziedzic, P., and Cordova, A.: Formation of secondary light-absorbing "fulvic-like" oligomers: A common process in aqueous and ionic atmospheric particles?, Geophys. Res. Lett., 34, L21812, https://doi.org/10.1029/2007GL031300, 2007.
Partay, L., Jedlovszky, P., Hoang, P. N. M., Picaud, S., and Mezei, M.: Free-Energy Profile of Small Solute Molecules at teh Free Surfaces of Water and Ice, as Determined by Cavity Insertion Widom Calculations, J. Phys. Chem. C, 111, 9407–9416, 2007.
Parungo, F. P. and Pueschel, R. F.: Ice Nucleation: Elemental Identification of Particles in Snow Crystals, Science, 180, 1057–1058, 1973.
Pautler, B. G., Simpson, A. J., Simpson, M. J., Tseng, L.-H., Spraul, M., Dubnick, A., Sharp, M. J., and Fitzsimmons, S. J.: Detection and Structural Identification of Dissolved Organic Matter in Antarctic Glacial Ice at Natural Abundance by SPR-W5-WATERGATE (1)H NMR Spectroscopy, Environ. Sci. Technol., 45, 4710–4717, 2011.
Perovich, D. K.: The changing Arctic sea ice cover, Oceanography, 24, 162–173, 2011.
Perovich, D. K. and Richter-Menge, J. A.: Surface Characteristics of Lead Ice, J. Geophys. Res.-Oceans, 99, 16341–16350, 1994.
Perrier, S., Houdier, S., Domine, F., Cabanes, A., Legagneux, L., Sumner, A. L., and Shepson, P. B.: Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack, Atmos. Environ., 36, 2695–2705, 2002.
Petitjean, M., Mirabel, P., and Le Calve, S.: Uptake Measurements of Acetaldehyde on Solid Ice Surfaces and on Solid/Liquid Supercooled Mixtures Doped with HNO3 in the Temperature Range 203–253 K, J. Phys. Chem. A, 113, 5091–5098, 2009.
Pincock, R. E.: Reactions in frozen systems, Acc. Chem. Res., 2, 97–103, 1969.
Pouvesle, N., Kippenberger, M., Schuster, G., and Crowley, J. N.: The interaction of H(1)O(1) with ice surfaces between 203 and 233 K, Phys. Chem. Chem. Phys., 12, 15544–15550, 2010.
Preunkert, S., Wagenbach, D., and Legrand, M.: A seasonally resolved alpine ice core record of nitrate: Comparison with anthropogenic inventories and estimation of preindustrial emissions of NO in Europe, J. Geophys. Res.-Atmos., 108, 4681, https://doi.org/10.1029/2003JD003475, 2003.
Ram, K. and Anastasio, C.: Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow, Atmos. Environ., 43, 2252–2259, 2009.
Ramamurthy, V.: Organic photochemistry in organized media, Tetrahedron , 42, 5753–5839, 1986.
Ramseier, R. O.: Self-diffusion of tritium in natural and synthetic ice monocrystals, J. Appl. Phys., 38, 2553–2556, 1967.
Ray, D., Kurkova, R., Hovorkova, I., and Klan, P.: Determination of the specific surface area of snow using ozonation of 1,1-Diphenylethylene, Environ. Sci. Technol., 45, 10061–10067, 2011.
Riedel, A., Michel, C., Gosselin, M., and LeBlanc, B.: Winter-spring dynamics dynamics in sea-ice carbon cycling in the coastal Arctic Ocean, J. Marine Syst., 74, 918–932, 2008.
Rincon, A. G., Guzman, M. I., Hoffmann, M. R., and Colussi, A. J.: Optical Absorptivity versus Molecular Composition of Model Organic Aerosol Matter, J. Phys. Chem. A, 113, 10512–10520, 2009.
Rincon, A. G., Guzman, M. I., Hoffmann, M. R., and Colussi, A. J.: Thermochromism of Model Organic Aerosol Matter, J. Phys. Chem. Lett., 1, 368–373, 2010.
Roberts, J. L., vas Ommen, T. D., Curran, M. A. J., and Vance, T. R.: Methanesulphonic acid loss during ice-core storage: Recommendations based on a new diffusion coefficient, J. Glaciol., 55, 784–788, 2009.
Robinson, C., Boxe, C. S., Guzman, M. I., Colussi, A. J., and Hoffmann, M. R.: Acidity of Frozen Electrolyte Solutions, J. Phys. Chem. B, 110, 7613–7616, 2006.
Roth, C. M., Goss, K. U., and Schwarzenbach, R. P.: Sorption of diverse organic vapors to snow, Environ. Sci. Technol., 38, 4078–4084. 2004.
Rowland, G. A., Bausch, A. R., and Grannas, A. M.: Photochemical processing of aldrin and dieldrin in frozen aqueous solutions under arctic field conditions, Environ. Pollut., 159, 1076–1084, 2011.
Ruzicka, R., Barakova, L., and Klan, P.: Photodecarbonylation of dibenzyl ketones and trapping of radical intermediates by copper(II) chloride in frozen aqueous solutions, J. Phys. Chem. B, 109, 9346–9353, 2005.
Salmon, R. A., Bauguitte, S. J.-B., Bloss, W., Hutterli, M. A., Jones, A. E., Read, K., and Wolff, E. W.: Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica, Atmos. Chem. Phys., 8, 4085–4093, https://doi.org/10.5194/acp-8-4085-2008, 2008.
Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F.: Secondary organic material formed by methylglyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997–1016, https://doi.org/10.5194/acp-10-997-2010, 2010.
Savarino, J. and Legrand, M.: High northern latitude forest fires and vegetation emissions over the last millenium inferred from the chemistry of a central Greenland ice core, J. Geophys. Res., 103, 8267–8279, 1998.
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.
Scatena, L. F., Brown, M. G., and Richmond, G. L.: Water at hydrophobic surface: Weak hydrogen bonding and strong orientation effects, Science, 292, 908–912, 2001.
Schwier, A. N., Sareen, N., Mitroo, D. M., Shapiro, E. L., and McNeill, V. F.: Glyoxal-Methylglyoxal Cross-Reactions in Secondary Organic Aerosol Formation, Environ. Sci. Technol., 44, 6174–6182, 2010.
Seinfeld, J. H. and Pankow, J. F.: Organic atmospheric particulate material, Ann. Rev. Phys. Chem., 54, 121–140, 2003.
Shapiro, E. L., Szprengiel, J., Sareen, N., Jen, C. N., Giordano, M. R., and McNeill, V. F.: Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9, 2289–2300, https://doi.org/10.5194/acp-9-2289-2009, 2009.
Shaw, P. M., Russell, L. M., Jefferson, A., and Quinn, P. K.: Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter, Geophys. Res. Lett., {37}(L10803), https://doi.org/10.1029/2010GL042831, 2010.
Shepson, P. B., Ariya, P. A., Deal, C. J., Donaldson, D. J., Douglas, T. A., Loose, B., Maksym, T., Matrai, P. A., Russell, L. M., Saenz, B., Stefels, J., and Steiner, N.: Changing Polar Environments: Interdisciplinary Challenges, EOS Trans., American Geophysical Union, 93, 117–124. 2012.
Sieg, K., Fries, E., and Püttmann, W.: Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry, J. Chromatog. A, 1178, 178–186, 2008.
Smith, M. and Pounder, E. R.: Impurity concentration profiles in ice by an anthrone method, Can. J. Phys., 38, 354–368, 1960.
Sokolov, O. and Abbatt, J. P. D.: Adsorption to ice of n-alcohols (ethanol to 1-hexanol), acetic acid, and hexanal, J. Phys. Chem. A, 106, 775–782, 2002.
Starokozhev, E., Sieg, K., Fries, E., and Puttmann, W.: Investigation of partitioning mechanism for volatile organic compounds in a multiphase system, system, Chemosphere, 82, 1482–1488, 2011.
Starr, D. E., Pan, D., Newberg, J. T., Ammann, M., Wang, E. G., Michaelides, A., and Bluhm, H.: Acetone adsorption on ice investigated by X-ray spectroscopy and density functional theory, Phys. Chem. Chem. Phys., 13, 19988–19996, 2011.
Stubbins, A., Hood, E., Raymond, P. A., Aiken, G. R., Sleighter, R. L., Hernes, P. J., Butman, D., Hatcher, P. G., Striegl, R. G., Schuster, P., Abdulla, H. A. N., Vermilyea, A. W., Scott, D. T., and Spencer, R. G. M.: Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nature Geosci., {5, }198–201, 2012.
Sumner, A. L., Shepson, P. B., Grannas, A. M., Bottenheim, J. W., Anlauf, K. G., Worthy, D., Schroeder, W. H., Steffen, A., Domine, F., Perrier, S., and Houdier, S.: Atmospheric chemistry of formaldehyde in the Arctic troposphere at Polar Sunrise, and the influence of the snowpack, Atmos. Environ., 36, 2553–2562, 2002.
Sumner, A. L. and Shepson, P. B.: Snowpack production of formaldehyde and its its effect on the Arctic troposphere, Nature, {398, }230–233, 1999.
Sun, J. M., Ariya, P. A., Leighton, H. G., and Yau, M. K.: Mystery of ice multiplication in warm-based precipitating shallow cumulus clouds, Geophys. Res. Lett., 37, L10802, https://doi.org/10.1029/2010GL042440, 2010.
Symington, A., Cox, R. A., and Fernandez, M. A.: Uptake of Organic Acids on Ice Surfaces: Evidence for Surface Modification and Hydrate Formation, Z. Phys. Chem., 224, 1219–1245, 2010.
Szyrmer, W. and Zawadzki, I.: Biogenic and anthropogenic sources of ice-forming nuclei: A review, B. Am. Meteor. Soc., 78, 209–228, 1997.
Takenaka, N. and Bandow, H.: Chemical kinetics of reactions in the unfrozen solution of ice, J. Phys. Chem. A, {111, }8780–8786, 2007.
Takenaka, N., Tanaka, M., Okitsu, K., and Bandow, H.: Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH., J. Phys. Chem. A, {110, }10628–10632, 2006.
Thibert, E. and Domine, F.: Thermodynamics and Kinetics of the Solid Solution Solution of HCl in Ice, J. Phys. Chem. B, 101, 3554–3565, 1997.
Thibert, E. and Domine, F.: Thermodynamics and Kinetics of the Solid Solution Solution of HNO3 in Ice, J. Phys. Chem. B, 102, 4432–4439, 1998.
Thomas, D. N. and Dieckmann, G. S.: Ocean science – Antarctic Sea ice – a habitat for extremophites, Science, 295, 641–644, 2002.
Timmis, K. N. and Pieper, D. H.: Bacteria designed for bioremediation, Trends Biotechnol., 17, 201–204, 1999.
Tschumi, J. and Stauffer, B.: Reconstructing past atmospheric CO2 concentration based on ice-core analyses: Open questions due to in situ production of CO2 in the ice, J. Glaciol., {46, }45–53, 2000.
Ullerstam, M. and Abbatt, J. P. D.: Burial of gas-phase HNO3 by growing ice surfaces under tropospheric conditions, Phys. Chem. Chem. Phys., 7, 3596–3600, 2005.
Ulrich, T., Ammann, M., Leutwyler, S., and Bartels-Rausch, T.: The adsorption of peroxynitric acid on ice between 230 K and 253 K, Atmos. Chem. Phys., 12, 1833–1845, https://doi.org/10.5194/acp-12-1833-2012, 2012.
Uritski, A. and Huppert, D.: Photoacid-base reaction in ice via a mobile L-defect., J. Phys. Chem. A, 112, 3066–3078, 2008.
Uritski, A., Presiado, I., Erez, Y., Gepshtein, R., and Huppert, D.: Classification of acids and acidities in I-h Ice II: Reversible photoacids as a probe for proton concentration., J. Phys. Chem. C, 113, 12901–12910, 2009a.
Uritski, A., Presiado, I., Erez, Y., Gepshtein, R., and Huppert, D.: Temperature dependence of proton diffusion in I-h ice, J. Phys. Chem. C, 113, 10285–10296, 2009b.
Usenko, S., Smonich, S. L. M., Hageman, K. J., Schrlau, J. E., Geiser, L., Campbell, D. H., Appleby, P. G., and Landers, D. H.: Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western US National Parks, Environ. Sci. Technol., 44, 4512–4518, 2010.
Voisin, D., Jaffrezo, J.-L., Houdier, S., Barret, M., Cozic, J., King, M. D., France, J. L., Reay, H. J., Grannas, A. M., Kos, G., Ariya, P. A., Beine, H. J., and Domine, F.: Carbonaceous species and HUmic LIke Substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow, J. Geophys. Res., 117, D00R19, https://doi.org/10.1029/2011JD016612, 2012.
von Hessberg, P., Pouvesle, N., Winkler, A. K., Schuster, G., and Crowley, J. N.: Interaction of formic and acetic acid with ice surfaces between 187 and 227 K. Investigation of single species- and competitive adsorption, Phys. Chem. Chem. Phys., 10, 2345–2355. 2008.
von Schneidemesser, E., Schauer, J. J., Shafer, M. M., Hagler, G. S. W., Bergin, M. H., and Steig, E. J.: A method for the analysis of ultra-trace levels of semi-volatile and non-volatile organic compounds in snow and application to a Greenland snow pit, Polar Sci., 2, 251–266, 2008.
Walker, J. D., Seesman, P. A., Herbert, T. L., and Colwell, R. R.: Petroleum Hydrocarbons – Degradation and Growth Potential of Deep-Sea Sediment Bacteria, Environ. Pollut., 10, 89–99, 1976.
Wania, F., Mackay, D., and Hoff, J. T.: The importance of snow scavenging of polychlorinated biphenyl and polycyclic aromatic hydrocarbon vapors, Environ. Sci. Technol., 33, 195–197, 1999.
Warren, S. G. and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols, J. Atmos. Sci., 37, 2734–2745, 1980.
Weber, J., Kurkova, R., Klanova, J., Klan, P., and Halsall, C. J.: Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments, Environ. Pollut., 157, 3308–3313, 2009.
Wettlaufer, J. S.: Impurity Effects in the Premelting of Ice, Phys. Rev. Lett., 82, 2516–2519, 1999.
Williams, M. W., Helmig, D., and Blanken, P.: White on green: under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range, Biogeochemistry, 95, 1–12, 2009.
Winterhalter, R., Kippenberger, M., Williams, J., Fries, E., Sieg, K., and Moortgat, G. K.: Concentrations of higher dicarboxylic acids C5–C13 in fresh snow samples collected at the High Alpine Research Station Jungfraujoch during CLACE 5 and 6, Atmos. Chem. Phys., 9, 2097–2112, https://doi.org/10.5194/acp-9-2097-2009, 2009.
Workman, E. J. and Reynolds, S. E.: Electrical Phenomena Occurring During the Freezing of Dilute Aqueous Solutions and Their Possible Relationship to Thunderstorm Electricity, Phys. Rev., 78, 254–259, 1950.
Wren, S. N., Kahan, T. F., Jumaa, K. B., and Donaldson, D. J.: Spectroscopic studies of the heterogeneous reaction between O-3(g) and halides at the surface of frozen salt solutions, J. Geophys. Res.-Atmos., 115, D16309, https://doi.org/10.1029/2010JD013929, 2010.
Wren, S.N. and Donaldson, D.J.: Laboratory Study of pH at the Air-Ice Interface, J. Phys. Chem. C, 116, 10171-10180, 2012.
Xu, Y., Simpson, A. J., Eyles, N., and Simpson, M. J.: Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Canadian Rocky Mountains, Org. Geochem., 41, 177–186, 2010.
Yamamoto, S., Alcauskas, J. B., and Crozier, T. E.: Solubility of Methane in Distilled Water and Seawater, J. Chem. Eng. Data, 21, 78–80, 1976.
Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., Cristofanelli, P., Duchi, R., Tartari, G., and Lau, K.-M.: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory – Pyramid data and snow albedo changes over Himalayan glaciers, Atmos. Chem. Phys., 10, 6603–6615, https://doi.org/10.5194/acp-10-6603-2010, 2010.
Yaws, C. L.: Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel, available at: http://www.knovel.com.ezproxy.cul.columbia.edu/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=667&VerticalID=0, 2003.
Altmetrics
Final-revised paper
Preprint