Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 11, issue 24
Atmos. Chem. Phys., 11, 13047–13059, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: European Integrated Project on Aerosol-Cloud-Climate and Air...

Atmos. Chem. Phys., 11, 13047–13059, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Dec 2011

Research article | 21 Dec 2011

Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

E. J. Freney1, K. Sellegri1, F. Canonaco2, J. Boulon1, M. Hervo1, R. Weigel1,*, J. M. Pichon1, A. Colomb1, A. S. H. Prévôt2, and P. Laj1,** E. J. Freney et al.
  • 1Laboratoire de Météorologie Physique, CNRS-Université Blaise Pascal, UMR6016, 63117, Clermont Ferrand, France
  • 2Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
  • *now at: Institute for Physics of the Atmosphere, Johannes Gutenberg University Mainz, Germany
  • **now at: Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS UMR5183, Université Joseph Frourier Grenoble 1, Saint Martin d'Héres, France

Abstract. Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD) research station (1465 m) in autumn (September and October 2008), winter (February and March 2009), and summer (June 2010) using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA) and a semi-volatile organic aerosol particle (SV-OOA). Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning) during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL) or in the free troposphere (FT)/residual layer (RL). We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL/FT airmasses contain high mass fractions of sulphate and LV-OOA. This study provides unique insights into the effects of season and airmass variability on regional aerosol particles measured at an elevated site.

Publications Copernicus
Final-revised paper