Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 10, issue 15
Atmos. Chem. Phys., 10, 7197–7214, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 10, 7197–7214, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  06 Aug 2010

06 Aug 2010

A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat

C. J. Stubenrauch, S. Cros, A. Guignard, and N. Lamquin C. J. Stubenrauch et al.
  • Laboratoire de Météorologie Dynamique, IPSL/CNRS, UMR 8539, Ecole Polytechnique, France

Abstract. We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height. In addition, they permit to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated from 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover from 0 to 0.3. 42% of all clouds are high clouds, and about 42% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5) is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil) cirrus penetrate the stratosphere in the tropics.

Publications Copernicus
Final-revised paper