Preprints
https://doi.org/10.5194/acp-2022-29
https://doi.org/10.5194/acp-2022-29
03 Feb 2022
 | 03 Feb 2022
Status: this preprint has been withdrawn by the authors.

Technical Note: A High-Resolution Autonomous Record of Ice Nuclei Concentrations for Fall and Winter at Storm Peak Laboratory

Anna L. Hodshire, Ezra J. T. Levin, A. Gannet Hallar, Christopher N. Rapp, Dan R. Gilchrist, Ian McCubbin, and Gavin R. McMeeking

Abstract. High-resolution, long-term measurements of ice nucleating particles (INPs) have been impeded by complex instrumentation that requires a trained on-site technician to operate or analyze offline. We have significantly updated the well-characterized continuous flow diffusion chamber (CFDC) instrument to run autonomously with minimal in-person handling and easy remote access. This new CFDC, the CFDC-Ice Activation Spectrometer (CFDC-IAS) was deployed for four months (October 2020–January 2021) at the mountain-top Storm Peak Laboratory site in Colorado and provided 5-minute resolution measurements daily at target temperatures of −20, −25, and −30 °C. Concentrations of INPs across all temperatures had a median value of 6 per standard liter (sL−1), and a mean of 10 sL−1 with a range of ~0–470 sL−1.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Anna L. Hodshire, Ezra J. T. Levin, A. Gannet Hallar, Christopher N. Rapp, Dan R. Gilchrist, Ian McCubbin, and Gavin R. McMeeking

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2022-29', Gabor Vali, 19 Feb 2022
  • RC2: 'Comment on acp-2022-29', Anonymous Referee #2, 24 Feb 2022
  • RC3: 'Comment on acp-2022-29', Anonymous Referee #3, 27 Feb 2022
  • AC1: 'Comment on acp-2022-29', Anna Hodshire, 10 May 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2022-29', Gabor Vali, 19 Feb 2022
  • RC2: 'Comment on acp-2022-29', Anonymous Referee #2, 24 Feb 2022
  • RC3: 'Comment on acp-2022-29', Anonymous Referee #3, 27 Feb 2022
  • AC1: 'Comment on acp-2022-29', Anna Hodshire, 10 May 2022
Anna L. Hodshire, Ezra J. T. Levin, A. Gannet Hallar, Christopher N. Rapp, Dan R. Gilchrist, Ian McCubbin, and Gavin R. McMeeking
Anna L. Hodshire, Ezra J. T. Levin, A. Gannet Hallar, Christopher N. Rapp, Dan R. Gilchrist, Ian McCubbin, and Gavin R. McMeeking

Viewed

Total article views: 905 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
627 232 46 905 102 36 60
  • HTML: 627
  • PDF: 232
  • XML: 46
  • Total: 905
  • Supplement: 102
  • BibTeX: 36
  • EndNote: 60
Views and downloads (calculated since 03 Feb 2022)
Cumulative views and downloads (calculated since 03 Feb 2022)

Viewed (geographical distribution)

Total article views: 905 (including HTML, PDF, and XML) Thereof 905 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download

This preprint has been withdrawn.

Short summary
The new Continuous Flow Diffusion Chamber-Ice Activation Spectrometer collected 4 months of ice nucleating particle (INP) measurements at a 5-minute resolution at the mountainside Storm Peak Laboratory. Most long-term INP measurements are at a time resolution of a day or longer: our instrument is a promising advance towards high-resolution long-term INP measurements. We observe higher peak INP concentrations than previous mountain studies, possibly due to the higher time resolution of our data.
Altmetrics