Preprints
https://doi.org/10.5194/acp-2021-158
https://doi.org/10.5194/acp-2021-158
26 Mar 2021
 | 26 Mar 2021
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Shift in seasonal snowpack melt-out date due to light-absorbing particles at a high-altitude site in Central Himalaya

Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen

Abstract. Snow darkening by deposited light-absorbing particles (LAP) has the potential to accelerate snowmelt and shift the snow melt-out date. Here we investigate the sensitivity of the seasonal snow cover duration to changes in LAP at a high altitude valley site in the Central Himalayas, India. First, the variation of the albedo of the seasonal snow was emulated using two seasons of automatic weather station (AWS) data and applying a constant, but realistic deposition of LAP to the snow. Then, the number of days with snowmelt were evaluated based on the estimated net energy budget of the seasonal snow cover and the derived surface temperature. The impact on the energy budget by LAP combined with the melt-day analysis resulted in very simple relations to determine the contribution of LAP to the number of days with snowmelt of the seasonal snow in Himalaya. Above a concentration of 1 ng g-1 (Elemental Carbon equivalent, ECeq, which in this study includes EC and the absorption equivalent EC contribution by other light absorbing particles, such as mineral dust) in new snow, the number of days with snowmelt can be estimated by; days=0.0109(log⁡(〖EC〗_eq )+1)PP±0.0033(log⁡(〖EC〗_eq )+1)PP, where PP is the seasonal precipitation in mm snow water equivalent. A change in ECeq by a factor of two corresponds to about 1/3 of a day per 100 mm precipitation. Although the change in the number of days with melt caused by the changes in ECeq is small, the estimated total change in the snow melt-out date by LAP can be significant. For our realistic base case scenario for the Sunderdhunga Valley, Central Himalayas, India, of ECeq=100 ng g-1 and PP=400 mm, this yields in an advancement of the melt-out date of about 13 days.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-158', Anonymous Referee #1, 26 Apr 2021
  • RC2: 'Review of "Shift in seasonal snowpack melt-out date due to light absorbing particles at a high-altitude site in Central Himalaya"', Edward Bair, 18 May 2021
  • AC1: 'Author response on acp-2021-158', Jonas Svensson, 10 Jun 2021

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-158', Anonymous Referee #1, 26 Apr 2021
  • RC2: 'Review of "Shift in seasonal snowpack melt-out date due to light absorbing particles at a high-altitude site in Central Himalaya"', Edward Bair, 18 May 2021
  • AC1: 'Author response on acp-2021-158', Jonas Svensson, 10 Jun 2021
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen

Viewed

Total article views: 1,338 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
912 369 57 1,338 131 43 39
  • HTML: 912
  • PDF: 369
  • XML: 57
  • Total: 1,338
  • Supplement: 131
  • BibTeX: 43
  • EndNote: 39
Views and downloads (calculated since 26 Mar 2021)
Cumulative views and downloads (calculated since 26 Mar 2021)

Viewed (geographical distribution)

Total article views: 1,295 (including HTML, PDF, and XML) Thereof 1,295 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Altmetrics