Preprints
https://doi.org/10.5194/acp-2021-11
https://doi.org/10.5194/acp-2021-11
29 Jan 2021
 | 29 Jan 2021
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Dynamical and chemical processes contributing to ozone loss in exceptional Arctic stratosphere winter-spring of 2020

Sergei P. Smyshlyaev, Pavel N. Vargin, Alexander N. Lukyanov, Natalia D. Tsvetkova, and Maxim A. Motsakov

Abstract. The features of dynamical processes and changes in the ozone layer in the Arctic stratosphere during the winter-spring season 2019–2020 are analyzed using ozonesondes, reanalysis data and numerical experiments with a chemistry-transport model (CTM). Using the trajectory model of the Central Aerological Observatory (TRACAO) and the ERA5 reanalysis ozone mixing ratio data, a comparative analysis of the evolution of stratospheric ozone averaged along the trajectories in the winter-spring seasons of 2010–2011, 2015–2016, and 2019–2020 was carried out, which demonstrated that the largest ozone loss at altitudes of 18–20 km within stratospheric polar vortex in the Arctic in winter-spring 2019–2020 exceeded the corresponding values of the other two winter-spring seasons 2010–2011 and 2015–2016 with the largest decrease in ozone content in recent year. The total decrease in the column ozone inside the stratospheric polar vortex, calculated using the vertical ozone profiles obtained based on the ozonesondes data, in the 2019–2020 winter-spring season was more than 150 Dobson Units, which repeated the record depletion for the 2010–2011 winter-spring season. At the same time, the maximum ozone loss in winter 2019–2020 was observed at lower levels than in 2010–2011, which is consistent with the results of trajectory analysis and the results of other authors. The results of numerical calculations with the CTM with dynamical parameters specified from the MERRA-2 reanalysis data, carried out according to several scenarios of accounting for the chemical destruction of ozone, indicated that both dynamical and chemical processes make contributions to ozone loss inside the polar vortex. In this case, dynamical processes predominate in the western hemisphere, while in the eastern hemisphere chemical processes make an almost equal contribution with dynamical factors, and the chemical depletion of ozone is determined not only by heterogeneous processes on the surface of the polar stratospheric clouds, but by the gas-phase destruction in nitrogen catalytic cycles as well.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Sergei P. Smyshlyaev, Pavel N. Vargin, Alexander N. Lukyanov, Natalia D. Tsvetkova, and Maxim A. Motsakov

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Reviewer comment on acp-2021-11', Ingo Wohltmann, 03 Feb 2021
    • AC1: 'Reply on RC1', Sergei Smyshlyaev, 26 Mar 2021
    • AC4: 'Reply on RC1', Sergei Smyshlyaev, 26 Mar 2021
  • RC2: 'review of acp-2021-11', Gloria Manney, 23 Feb 2021
    • AC2: 'Reply on RC2', Sergei Smyshlyaev, 26 Mar 2021
    • AC5: 'Reply on RC2', Sergei Smyshlyaev, 26 Mar 2021
  • RC3: 'Comment on acp-2021-11', Anonymous Referee #2, 24 Feb 2021
    • AC3: 'Reply on RC3', Sergei Smyshlyaev, 26 Mar 2021

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Reviewer comment on acp-2021-11', Ingo Wohltmann, 03 Feb 2021
    • AC1: 'Reply on RC1', Sergei Smyshlyaev, 26 Mar 2021
    • AC4: 'Reply on RC1', Sergei Smyshlyaev, 26 Mar 2021
  • RC2: 'review of acp-2021-11', Gloria Manney, 23 Feb 2021
    • AC2: 'Reply on RC2', Sergei Smyshlyaev, 26 Mar 2021
    • AC5: 'Reply on RC2', Sergei Smyshlyaev, 26 Mar 2021
  • RC3: 'Comment on acp-2021-11', Anonymous Referee #2, 24 Feb 2021
    • AC3: 'Reply on RC3', Sergei Smyshlyaev, 26 Mar 2021
Sergei P. Smyshlyaev, Pavel N. Vargin, Alexander N. Lukyanov, Natalia D. Tsvetkova, and Maxim A. Motsakov

Model code and software

INM-RSHU Chemistry-Climate Model 0-120 km Smyshlyaev, Sergei, Galin, Vener, and Volodin, Evgenii https://doi.org/10.5281/zenodo.3555479

Sergei P. Smyshlyaev, Pavel N. Vargin, Alexander N. Lukyanov, Natalia D. Tsvetkova, and Maxim A. Motsakov

Viewed

Total article views: 2,029 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,342 635 52 2,029 35 35
  • HTML: 1,342
  • PDF: 635
  • XML: 52
  • Total: 2,029
  • BibTeX: 35
  • EndNote: 35
Views and downloads (calculated since 29 Jan 2021)
Cumulative views and downloads (calculated since 29 Jan 2021)

Viewed (geographical distribution)

Total article views: 2,027 (including HTML, PDF, and XML) Thereof 2,027 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Jan 2025
Download
Short summary
The dynamical processes and changes in Arctic ozone during the winter-spring season 2019–2020 were analyzed using ozonesondes, reanalysis data and numerical experiments with chemistry-transport and trajectory models. The results of numerical experiments indicated that dynamical processes predominate in ozone loss, and the chemical ozone depletion is determined not only by heterogeneous processes on the surface of the polar stratospheric clouds, but by the gas-phase destruction as well.
Altmetrics