Preprints
https://doi.org/10.5194/acp-2020-1269
https://doi.org/10.5194/acp-2020-1269
04 May 2021
 | 04 May 2021
Status: this preprint has been withdrawn by the authors.

Measurement Report: Spatial and vertical variability of aerosol optical properties during MOABAI mobile on-road campaign in North China Plain

Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan

Abstract. The North China Plain (NCP) has been experiencing serious air quality problems since the rapid urbanization and industrialization and has been the subject of many studies over the years. This work presents mapping at a fine scale of the aerosol spatial and vertical variability obtained during the MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) using a van equipped with a micro-pulse LIDAR, a sun photometer and in situ instruments, performing on-road measurements. The campaign was conducted from 5 May to 23 May 2017 and had as a main objective to map the pollutants distribution in Beijing and NCP area. A summary of aerosol properties during all measurement days and a comprehensive case study along the industrial Binhai New Area near Tianjin are presented. The highest AOD at 440 nm (1.34 and 1.9) were recorded during two heavy pollution episodes on 18 May and 19 May 2017, respectively. The lowest PBL (Planetary Boundary Layer) heights (< 1500 m) were recorded during the heavy pollution events, correlated with the highest AOD. Transport of dust from Gobi Desert was captured during the mobile measurements, impacting Beijing in the 9–13 May period. Exploring the NCP outside Beijing provided datasets in regions with lack of aerosol observation sites and allowed mapping higher aerosol concentrations when passing by polluted cities in NCP (Baoding, Tianjin and Tangshan). In this study, we provide the first mass concentration profiles derived from a mobile micro-pulse LIDAR, making use of complementary information on aerosol type from sun photometer and in situ data. The case study of 17 May 2017 revealed mean extinction coefficients of 0.14 ± 0.10 km−1 at 532 nm and total mass concentration of 80 ± 62 μg m−3 in the PBL (< 2000 m) for the mobile transect from Tianjin to Tangshan along the coast of Bohai Sea. The highest extinction (0.56 km−1) and mass concentrations (404 μg m−3) were found in the industrial Binhai New Area. The PM10 and PM2.5 fractions of the total mass concentration profiles were separated using the columnar size distribution derived from sun photometer measurements. A general good agreement was found between the lidar-derived PM concentrations at surface level and the ones recorded at the closest air quality stations along the transect, with the only exception along the industrial region near Tianjin port, where emissions were highly variable.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2020-1269', Anonymous Referee #3, 21 May 2021
  • RC2: 'Comment on acp-2020-1269', Anonymous Referee #1, 01 Jun 2021

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2020-1269', Anonymous Referee #3, 21 May 2021
  • RC2: 'Comment on acp-2020-1269', Anonymous Referee #1, 01 Jun 2021
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan

Viewed

Total article views: 1,352 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
915 389 48 1,352 41 42
  • HTML: 915
  • PDF: 389
  • XML: 48
  • Total: 1,352
  • BibTeX: 41
  • EndNote: 42
Views and downloads (calculated since 04 May 2021)
Cumulative views and downloads (calculated since 04 May 2021)

Viewed (geographical distribution)

Total article views: 1,346 (including HTML, PDF, and XML) Thereof 1,346 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Jan 2025
Download

This preprint has been withdrawn.

Short summary
This study reports results from MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) in North China Plain in may 2017, a unique campaign involving a van equipped with remote sensing and in situ instruments to perform on-road mobile measurements. Aerosol optical properties and mass concentration profiles were derived, capturing the fine spatial distribution of pollution and concentration levels.
Altmetrics