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Abstract. The North China Plain (NCP) has been experiencing serious air quality problems since the rapid urbanization and 15 

industrialization and has been the subject of many studies over the years. This work presents mapping at a fine scale of the 

aerosol spatial and vertical variability obtained during the MOABAI campaign (Mobile Observation of Atmosphere By 

vehicle-borne Aerosol measurement Instruments) using a van equipped with a micro-pulse LIDAR, a sun photometer and in 

situ instruments, performing on-road measurements. The campaign was conducted from 5 May to 23 May 2017 and had as a 

main objective to map the pollutants distribution in Beijing and NCP area. A summary of aerosol properties during all 20 

measurement days and a comprehensive case study along the industrial Binhai New Area near Tianjin are presented. The 

highest AOD at 440 nm (1.34 and 1.9) were recorded during two heavy pollution episodes on 18 May and 19 May 2017, 

respectively. The lowest PBL (Planetary Boundary Layer) heights (< 1500 m) were recorded during the heavy pollution 

events, correlated with the highest AOD. Transport of dust from Gobi Desert was captured during the mobile measurements, 
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impacting Beijing in the 9-13 May period. Exploring the NCP outside Beijing provided datasets in regions with lack of 25 

aerosol observation sites and allowed mapping higher aerosol concentrations when passing by polluted cities in NCP 

(Baoding, Tianjin and Tangshan). In this study, we provide the first mass concentration profiles derived from a mobile 

micro-pulse LIDAR, making use of complementary information on aerosol type from sun photometer and in situ data. The 

case study of 17 May 2017 revealed mean extinction coefficients of 0.14 ± 0.10 km-1 at 532 nm and total mass concentration 

of 80 ± 62 µg m-3 in the PBL (< 2000 m) for the mobile transect from Tianjin to Tangshan along the coast of Bohai Sea. The 30 

highest extinction (0.56 km-1) and mass concentrations (404 µg m-3) were found in the industrial Binhai New Area. The PM10 

and PM2.5 fractions of the total mass concentration profiles were separated using the columnar size distribution derived from 

sun photometer measurements. A general good agreement was found between the lidar-derived PM concentrations at surface 

level and the ones recorded at the closest air quality stations along the transect, with the only exception along the industrial 

region near Tianjin port, where emissions were highly variable.  35 

1 Introduction 

The North China Plain (NCP) in north-eastern China is one of the most populated and polluted regions of China, where long-

standing heavy aerosol pollution episodes frequently occur (Chen and Wang, 2015; Yang et al., 2018). The region has 

undergone rapid development of urbanization and industrialization for rapid economic growth leading to a deterioration in 

air quality (Han et al., 2015) and becoming one of the regions with the most severe air pollution in China. Some of the most 40 

polluted cities in China (Beijing, Baoding, Tianjin, Tangshan, Shijiazhuang) are here and air pollution has become an 

important concern in this region (An et al., 2019; Sun et al., 2017; Zhu et al., 2016). The major contributor to air pollution is 

particulate matter (PM), mainly fine particulate matter (PM2.5) emitted from fossil fuel, biomass burning, and urban 

construction (Lei et al., 2011). The NCP is also impacted by frequent dust storms in spring (Yu et al., 2017), studies showing 
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an increase in dust presence in northeast and northwest regions (Li, 2020). Regional transport plays an important role in 45 

urban air pollution. Both local and regional sources contribute to the air pollution in the NCP region, depending on the 

synoptic conditions, desert dust being advected over NCP when air flows are dominated by westerly winds (Sun et al., 2001) 

while fine particles pollution events occur with southern winds flow (Chen and Wang, 2015). The measures taken through 

air pollution control policies show an improvement of air quality and a negative trend for PM2.5 concentrations since 2013 

(Ma et al., 2018; Zhai et al., 2019). Nonetheless, the pollution levels are still high in NCP, especially during haze episodes, 50 

and exceed the air quality limits locally. The ambient air quality standards of the World Health Organization (WHO) for 24 h 

average are 25 µg m-3 for PM2.5 and 50 µg m-3 for PM10, lower than those established by the Ministry of Ecology and 

Environment of the People’s Republic of China (MEE), of 35-75 µg m-3 for PM2.5 and 50-150 µg m-3 for PM10. The diversity 

of emissions and the mixture of pollutants result in complex physical, chemical and optical properties of aerosols in the NCP 

region, making it an interesting area to study. A number of investigations of air pollution in the NCP achieved using 55 

observation sites, aircrafts measurements, mobile laboratories, satellite data and air quality models have been conducted over 

the years. A review of these studies in NCP is given in Zhu et al. (2016). The observation sites in NCP are generally located 

in or around large cities, mostly around Beijing, and cannot capture the spatial variability of pollutants at a fine scale. In 

order to address the air pollution problems in the NCP, it is necessary to identify the distribution of air pollutants in the 

region and their transport. Observations from a limited number of measurement sites cannot describe this spatial variability 60 

and the transport of pollutants in the NCP. For this, a mobile instrumented laboratory performing on-road measurements is 

useful for identifying the sources of pollution and the areas exceeding the air pollution limits and the regional transport of 

aerosols. 

In this paper, we report on-road remote sensing and in situ measurements of the optical properties, particle size distributions, 

and spatial and vertical distribution of aerosols in Beijing and NCP area in the 9-19 May 2017 period conducted with a 65 
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mobile instrumented vehicle. The optical properties of aerosols at surface level were measured by in situ. The total column 

volume size distribution was derived from spectral aerosol optical depth (AOD) measurements. The extinction coefficient 

profiles derived from LIDAR measurements were converted into total mass concentration profiles with a mass extinction 

efficiency (MEE) approach. These properties are reported for different pollution levels and for a case study along Tianjin 

port. 70 

2 MOABAI campaign 

The MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) has been 

carried out from 5 to 23 May 2017 in North China Plain. The transects of the mobile measurements and the IAP (Institute of 

Atmospheric Physics) mobile platform are shown in Fig. 1. Remote sensing and in situ instrumentation were involved in the 

campaign in order to map the spatial and vertical variability of key aerosol properties in Beijing and other polluted cities in 75 

the NCP (Baoding, Tianjin, Tangshan). Mobile measurements have been conducted on 10 days, out of which 6 days in 

Beijing on the 4th, 5th and 6th ring-roads by day and by night and 4 days outside of Beijing, on the Beijing–Baoding–Tianjin, 

Tianjin – Tangshan, Tangshan - Beijing and Beijing - Xiahuayuan transects, as shown in Fig.1b.  

2.1 Mobile laboratory  

The on-road mobile measurements were conducted with the IAP mobile laboratory shown in Fig.1c, a Mercedes Benz 416 80 

CDI diesel van (length 6.72 m, width 2.01 m, height 2.89 m; payload 5.6 tons). A power generator operated by the engine 

could continuously supply power when the van was on. An uninterrupted power supply was employed to regulate the voltage 

and frequency of electricity and could support all instruments for around 8 h when engine was not working. A cooling 

system inside the van was used to maintain the temperature constant. The van was equipped with aerosol remote sensing and 

in situ instruments as well as real-time monitoring trace gas analysers. Table 1 gives an overview of all the instruments on 85 
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board the mobile laboratory, the measured parameters and the temporal resolution and uncertainty for each measurement. 

Only the measurements of aerosol properties by remote sensing and in situ instruments will be presented in this study. Gas-

phase parameters measured are not discussed in this study. 

The CE370 CIMEL micro-pulse LIDAR (lidar) and the PLASMA (Photomètre Léger Aéroporté pour la Surveillance des 

Masses d’Air) sun photometer from MAMS (Mobile Aerosol Monitoring System) payload (Popovici et al., 2018) were 90 

transported and integrated on site in the existing IAP van already equipped with in situ instruments and gas analysers. The 

lidar and the sun photometer have been previously used for on-road mobile measurements in France and have been described 

in details (Popovici et al., 2018). The lidar provided vertical profiles of aerosols and clouds in the troposphere, from 200 m 

up to around 12000 m altitude (molecular detection range, dependent on aerosol concentration) with a vertical resolution of 

15 m. The data quality was assured by following the Rayleigh fit protocol defined by EARLINET (Freudenthaler et al., 95 

2018). The comparison of the lidar profiles to the molecular profile computed for air density represents the absolute 

calibration of lidar signals and allows access further to the geophysical parameters such as the backscatter/extinction 

profiles. The uncertainties of the lidar profiles and the derived parameters have been previously discussed (Popovici et al., 

2018) and are shown in Table 1. 

PLASMA is the only mobile sun photometer able to track the sun during the vehicle’s motion, meets the AERONET 100 

standards and is included in the network, referenced as instrument #650. Compared to CIMEL CE318 sun photometers in 

AERONET, the current PLASMA model performs only direct sun measurements. The instrument is calibrated by Service 

National d’Observation, SNO PHOTONS/AERONET-EARLINET, component of ACTRIS (Aerosols, Clouds and Trace 

gases Research InfraStructure) and French component of AERONET. PLASMA follows the AERONET calibration protocol 

for the reference master instrument and is also intercalibrated regularly against a master sun photometer from PHOTONS 105 
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network at Observatoire de Haute Provence (OHP) in France before and after a field campaign. This allows checking the 

stability of the instrument over time as its characteristics may change. 

The in situ instruments consisted of a polar 3-l nephelometer (Aurora 4000 model, Ecotech) (Müller et al., 2011), a 7-l 

aethalometer (AE33, Maggee Scientific) (Drinovec et al., 2015), a Sky-OPC (11S, GRIMM Aerosol Technik) and trace gas 

analysers for NO2, SO2 and O3. Aerosol was sampled using an isokinetic inlet facing forward. The sampled air was split into 110 

two flows. One flow was open and directly exposed to in-car air in order to remove the excess air and reduce the pressure in 

instrument inlets. Tests showed that van speed higher than 20 km h-1 could ensure that the open flow was large enough to 

prevent in-car air to be sampled by instruments downstream. The other flow passed through a nafion drier (MD-700, Perma 

Pure) and then entered the nephelometer and aethalometer. The Sky-OPC had a separate isokinetic inlet, which could adapt 

the air velocity within a range of 16-25 m s-1 (the speed of van was approximately 60-90 km h-1 when assuming the wind 115 

speed was 0) using a nozzle with the opening of 1 mm. The gas analysers were calibrated using standard gases before the 

campaign. The nephelometer was calibrated using air and R134 before the campaign. The flow of the aethalometer was 

checked before and after the campaign.  

Finally, the van was equipped with a weather station that measured the meteorological data (ambient pressure, temperature, 

relative humidity and wind speed/direction). The driving speed was kept around 90 km h-1 (25 m s-1), in order to cover as 120 

much distance as possible in the NCP region. For the in situ aerosol and gas measurements, the position of the inlets at 3.3 m 

above the ground, at the front of the van, was intended to reduce self-pollution from the van’s exhaust. The driving speed 

was also maintained constant when possible, in order to provide a constant sampling flow rate and to reduce contamination 

from the van’s exhaust. The driving speed was higher than the normal wind speed, thereby during the measurements the 

particles from the exhaust could not reach the inlet in front of the vehicle as a result of the wind from the back of the vehicle. 125 
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The effects of self-pollution can be neglected for the remote sensing instruments as they measure either columnar parameters 

or vertical profiles starting from 200 m above ground level. 

2.2 Methods  

A Klett-Fernald-based (Fernald, 1984; Klett, 1981) backward inversion algorithm called BASIC (Mortier, 2013; Mortier et 

al., 2013a) was used to invert the lidar data in synergy with the sun photometer data. The algorithm requires the lidar range 130 

corrected signals (RCS) and the measured AOD to constrain the inversion. The products derived are: extinction coefficient 

profiles, height-independent lidar ratios (LR) resulted from the iterative process and cloud, aerosol layers and PBL heights. 

The algorithm’s description and applications to real data have been previously shown (Mortier et al., 2013a, 2016; Popovici, 

2018; Popovici et al., 2018). The sources of uncertainties have been described (Popovici et al., 2018) and the overall 

uncertainty for the retrieved aerosol extinction coefficient profiles is considered to be 25%. 135 

In situ measurements were also used in lidar inversion, to improve the extinction profile in the lidar blind zone (0-200 m). 

The scattering and absorption coefficients measured by the nephelometer and the aethalometer, respectively, were used to 

compute the extinction coefficients at surface level and a linear interpolation was applied between the lidar-derived 

extinction value at 200 m and the extinction measured by in situ at surface level. 

Nonetheless, care needs to be taken with in situ instruments as they measure the properties of dry particles and not in 140 

ambient conditions as it is done by lidar. Some aerosols can uptake water and the effect of relative humidity (RH) is rather 

constant up to 70%, but a sharp increase of scattering and extinction coefficients is shown for RH>70% (Randriamiarisoa et 

al., 2006; Skupin et al., 2016). The scattering coefficients measured by the nephelometer were corrected for the RH effect 

following Eq. (1) (Pan et al., 2009): 

𝜎!"#,%&' = 𝑓(𝑅𝐻)𝜎!"#,()*                         (1) 145 
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where 𝜎!"#,()* is the dry scattering coefficient measured by the nephelometer and 𝑓(𝑅𝐻) is the aerosol hygroscopic growth 

factor, defined by the empirical equation Eq. (2) (Pan et al., 2009): 

𝑓(𝑅𝐻) = 1 + 𝑎 (𝑅𝐻 100)⁄ +           (2) 

where a and b are fitting parameters for specific aerosol types, found in literature. The values used for the case study will be 

discussed in the dedicated section. For measurements when the RH > 40% a correction has been applied, using the RH 150 

measured by the weather station on the roof of the mobile platform. The aerosol absorption coefficients were obtained from 

aethalometer measurements, using correction factors obtained in a comparison study in Beijing between the aethalometer 

and a 3-wavelength Photoacoustic Soot Spectrometer (PASS-3, Droplet Measurement Technologies).  

We used GRASP (Dubovik et al., 2011, 2014, 2019) algorithm and software (https://www.grasp-open.com/, last access: 24 

March 2020) to retrieve the columnar aerosol volume size distribution (VSD) from spectral AOD measurements performed 155 

on-road with PLASMA sun photometer. The GRASP application for only direct sun measurements, called GRASP-AOD, 

has been previously described (Torres et al., 2017). It relies on statistically optimized fitting of the sun photometer 

observations and the aerosol is assumed as a mixture of spherical and non-spherical particles, with a defined sphere fraction 

and an assumed refractive index for the dominant aerosol type. The retrievals provide the six parameters describing the 

lognormal size distributions for the fine and coarse mode. The uncertainties of the retrieved size distributions lie within 5-160 

10% for the fine mode and within 10-20% for the coarse mode (Torres et al., 2017). In this study we show the GRASP-AOD 

retrievals for a case study of mobile on-road measurements along Tianjin port. 

A Mass Extinction Efficiency (MEE) approach (Lagrosas et al., 2005; Lewandowski et al., 2010) has been used to convert 

the aerosol extinction coefficient profiles derived from the lidar-sun-photometer-in-situ synergy into mass concentration 

profiles. The MEE relates the total column extinction coefficient to the total mass concentration of aerosols, computed for 165 

defined aerosol characteristics, and is defined by Eq. (3) (Lewandowski et al., 2010): 
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where r is the particle size, rmin and rmax are the limits of the particles size distribution, n(r) is the number size distribution, 

Qext is the Mie extinction efficiency computed for 532 nm, m is the assumed refractive index and ρ is the particle density. 

The MEE has been computed assuming spherical particles and the following aerosol properties: columnar volume size 170 

distribution (VSD) retrieved with GRASP-AOD, assumed refractive index and characteristic particle density for fine and 

coarse modes. The aerosol mass concentration profiles, 𝑀(𝑧), have been derived using Eq. (4): 

𝑀(𝑧) = 9"#$(:)
;<<

																		0=8
7+1                            (4) 

where 𝜎&>'(𝑧) is the aerosol extinction coefficient profile and MEE has been previously defined. 

This methodology has been previously applied for volcanic ash mass concentration estimations (Mortier et al., 2013) and for 175 

mass concentrations profiles for mobile observations in France (Popovici et al., 2018). The uncertainty on the mass 

concentration profiles comes from the uncertainties on the extinction coefficient profiles, the aerosol size distribution, the 

assumed refractive index and the particles density. The overall uncertainty on the mass concentration profiles is estimated to 

be between 35% and 45%. The parameters used for computing the MEE and their uncertainty for the case study are 

presented in the results section. 180 

3 Results  

3.1 Overview of aerosol properties 

An overview of the aerosol optical properties is presented in this section, namely the AOD and Angstrom Exponent (AE) 

from PLASMA sun photometer and the Range Corrected Signals (RCS) and Planetary Boundary Layer (PBL) height from 

lidar on-road measurements in NCP.  185 
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3.1.1 Spatial distribution of AOD and Angstrom Exponent 

The spatial distribution of AOD at 440 nm and Angstrom Exponent (AE) between 440 and 870 nm are shown in Fig. 2. The 

maps show the aerosol optical properties variability at different scales: fine scale (5x3 km grid) of the city of Beijing (Fig. 2a 

and Fig. 2g), medium scale (50x30 km grid) around the 5th ring road of Beijing (Fig. 2b-c and Fig. 2h-i) and regional scale 

(200x250 km grid) in the Great Plain of North China (Fig. 2e and Fig. 2k). A different AOD scale was chosen for each figure 190 

in order to show the fine spatial variability. The details of each mobile transect, the AOD, AE and PBL height ranges are 

summarized in Table 2. Four mobile observations (9, 11, 13 and 19 May) were conducted on Beijing’s 4th, 5th and 6th ring-

roads (Fig. 2a-d, Fig. 2f and Fig. 2g-j, Fig. 2l) and three of the mobile observations were carried out outside Beijing, in the 

NCP, on 16 May (Beijing– Baoding-Tianjin (AB)), 17 May (Tianjin-Tangshan (BC)) and 18 May (Tangshan-Beijing (CA)) 

(Fig. 2e and Fig. 2k).  Five types of days were observed: one day of heavy pollution (0.72 ± 0.06) in Beijing (9 May) with 195 

desert dust contribution (AE of 0.79 ± 0.05), one dust episode (AE of 0.05 ± 0.07) in Beijing (11 May) with moderate 

aerosol loading (0.37 ± 0.07), one clean day (0.12 ± 0.02) in Beijing (13 May) but still with dust contribution (AE of 0.67 ± 

0.04), two moderate pollution days (0.32-0.45) outside Beijing (16 and 17 May) consisting mainly of fine particles (AE of 

1.12-1.23), but also with desert dust contribution in altitude and two heavy pollution (0.86-1.69) days (18 and 19 May), with 

predominance of fine particles (AE of 1.31-1.41). Low AE values were recorded when north-westerly winds prevailed, 200 

Beijing and NCP being downwind of Asian dust storms, on the transport path from Gobi desert, while the highest AOD and 

AE were recorded during regional heavy pollution episodes when air masses moved from the south. For the moderate 

pollution and clean situations there was a contribution of both fine and coarse particles, indicated by AE values between 

those for dust and fine particles episodes. For indication, the average AOD and AE in Beijing during spring are 0.8 and 1, 

respectively (Yu et al., 2017). Lower AE in spring compared to other seasons show the impact of dust episodes, as observed 205 

also during our mobile measurements in MOABAI campaign.  
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3.1.2 Vertical variability and PBL height 

Figure 3 shows the vertical distribution of aerosol layers and clouds as seen by the mobile lidar during the on-road 

measurements in NCP. Most days were clear sky, except for 16 and 19 May afternoon, when cirrus clouds were present, 

explaining the lack of AOD measurements. The AOD at 440 nm and the PBL height are also depicted in Fig. 3 to show the 210 

correlation between the low PBL height and the high AOD values.  

HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory, Stein et al., 2015) backward trajectories for 72 h were 

performed for all days. For 9 May, which was a pollution day with dust intrusion, the air masses originated from S direction 

for the layers up to 2000 m above ground level, while the aerosol layers at 3000-4000 m altitude were transported from NW 

direction, suggesting desert dust component (also suggested by lower AE values). The back trajectories for the dust episode 215 

(11 May) showed air masses from NW direction (Inner Mongolia), transporting dust from Gobi desert. For the clean day (13 

May) air masses originated from N, bringing clean air over Beijing, with a small contribution of residual dust up to 4000 m 

altitude. The dust event in the 11-14 May 2017 period has been discussed in Li et al. (2018). Higher particle concentrations 

near the surface (increase in lidar backscatter signal) and lower PBL height compared to previous days were observed when 

passing by polluted cities (Baoding, Tianjin, Tangshan) and industrial regions (Tianjin coastal area). The lowest PBL height 220 

(500-1700 m) were recorded on the days with moderate and heavy fine particles pollution (16, 17, 18 and 19 May), when air 

masses flowed from S and SW directions, passing over polluted cities in the NCP (Baoding, Shijiazhuang, Tianjin). The 

lofted aerosol layers observed at around 2000 m above ground level on 16 May and around 3000 m altitude on 17 May 

originate from N and NW directions, suggesting dust contribution. For the heavy pollution days (18 and 19 May) there is a 

clear correlation between the high AOD (0.86-1.69) and the low PBL height (500-1600 m). It has been previously reported 225 

that heavy pollution episodes occur when the air masses move from S direction (Yu et al., 2017). Our mobile measurements 

showed also that heavy pollution episodes impact the whole NCP region. 
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3.2 Case study: Tianjin coastal area, 17 May 2017 

3.2.1 Study area and meteorological conditions 

The mobile transect and the local time of measurements are presented in Fig. 4a. We started the mobile measurements at 230 

08:30 local time (UTC+08:00) from the city of Tianjin, heading south and then continuing along the Bohai sea coast, passing 

through the industrialized Binhai New Area in the 12:00 - 13:30 time interval and then heading northeast to Tangshan and 

stopping at Guye around 16:00 local time. The weather was fair, with clear sky along the whole transect, ambient 

temperatures (T) in the 24°-30° C range and relative humidity (RH) in the 30-65 % range, with a noticeable increase of RH 

along the coast (Fig. 5c).  Backward trajectories (Fig. 8b) at 0 m and 500 m altitude show a S-SE flux and a NW direction for 235 

the air masses at 3000 m. It has been reported that southerly winds are associated with heavy pollution (Chen and Wang, 

2015; He et al., 2009; Yu et al., 2017), while advection of desert dust to an elevation of < 3000 m is common when air flows 

are dominated by westerly winds (Sun et al., 2001). 

The Binhai New Area, about 60 km east of Tianjin city, is an important economic coastal area with large industrial activities, 

including Tianjin port, the largest port in Northern China and one of the largest ports in the world. The industry sectors vary 240 

from machinery factories, petro-chemical manufacturing plants, automotive fitting factories and electronics facilities to sea 

salt production, shipbuilding and port activity and logistics. The area accounted 271 industrial enterprises in 2012, resulting 

in heavy pollution in the region (Kong et al., 2010; Su et al., 2017). Both natural and anthropogenic sources such as wind 

and soil erosion, sea salt, fossil-fuel combustion, vehicles emissions, construction activities, industrial processes and 

photochemical reactions contribute to the Particulate Matter (PM), resulting in a complex chemical composition of particles 245 

in this region (Ni et al., 2013). It is an interesting study area where the microphysical and optical properties of aerosols are 

not well characterized, much less at a fine scale. The situation is even more complex in spring as mineral dust transports 

occur frequently, adding to the anthropogenic pollution. One previous study showing mobile lidar measurements has been 
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conducted in Tianjin, in different seasons of 2016 (Lyu et al., 2018). Another study by Su et al. (2017) presents the 

variability of aerosol microphysical and optical properties as measured by sun photometers set up at three sites, urban, 250 

industrial and coastal areas of Tianjin. Nevertheless, this is the first time on-road mobile lidar, sun photometer and in situ 

measurements are conducted in Tianjin coastal area. 

3.2.2 Particle size distribution at surface level 

Mean volume size distributions measured by Sky-OPC on 30 minutes road segments are presented in Fig. 4b. In the fine 

mode, three peaks are observed, centered at 0.28, 0.45 and 0.65 μm diameter. In the supermicron range, a broad coarse mode 255 

is observed between 1 and 5 μm, with a distinct peak at 3.5 μm, seen all along the mobile transect, and a coarse mode 

centered at 7.5 μm. Super-coarse particles (> 10 μm) with mode diameters centered at 13, 18 and 30 μm are most probably 

re-suspended dust. The highest concentrations are observed at 0.28 μm, showing that fine particles pollution is 

predominating at surface level. The sampled aerosol were a mixture of regional scale background aerosol and direct emission 

of vehicles and industry. Both soot and secondary aerosol could contribute significantly in the submicron ambient aerosol. 260 

Hildemann et al. (1991) showed that the mass size distributions of both gasoline and diesel cars emissions present a single 

mode with a peak at 0.2 μm. Studies on ship emissions show that particles with Dp < 0.3 μm dominate (Merico et al., 2016; 

Petzold et al., 2008), which could also explain the increase of the fine mode centered at 0.28 μm when passing by the Tianjin 

port in our case. The peak at 0.65 μm could correspond to particulate sulphate and ammonium, as shown by Zhuang et al. 

(1999) in a study conducted on a coastal site in Hong Kong. According to the same study, the nitrates dominated at a coarse 265 

mode diameter of 3.95 μm, which could explain the peak at 3.5 μm in our case. The explanation for the high increase in 

particle concentrations in the Binhai New Area is two-fold. On one hand, we passed by a region with significant higher 

pollution (industry emissions, intense traffic emissions), so higher particles concentrations. On the other hand, the increase in 

concentration could be an effect of particle growth in the presence of higher RH. A clear correlation between the increase of 
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RH and the increase of particles concentrations is seen in Fig. 5. It has been shown that ship exhaust particles are highly 270 

hygroscopic in humid marine environment (Popovicheva et al., 2009). In our case, if particles smaller than 0.25 μm (the 

minimum detectable diameter of Sky-OPC) would increase in size due to water uptake, they would be counted in the upper 

size bins, resulting in an increase of particles number in the upper size bins. An increase in concentration is observed for 

particles in the 0.25 < Dp < 0.8 μm range, meaning that, according to our hypotheses, these particles could be more 

hygroscopic and affected by water uptake. Another interesting event depicted in Fig. 5 is a clear episode of sea breeze, 275 

between 12:10 and 13:40, marked by sudden increase of RH correlated with drop in temperature. This sea breeze event 

suggests that sea salt was transported inland. Sea salt have diameters higher than 0.3 μm and are highly hygroscopic 

(Randles et al., 2004). According to the review of Heintzenberg et al. (2000), the size distribution of marine aerosols presents 

3 distinct modes in the fine mode, centered at 0.05, 0.15 and 0.4 μm diameter, which could explain the increase of particles 

at 0.45 but this does not suffice to discriminate a marine aerosol contribution. 280 

3.2.3 Aerosol scattering and absorption at surface level 

The scattering (at 525 nm), absorption (at 520 nm) and extinction coefficients derived from nephelometer and aethalometer 

measurements at surface level, as well as the T and RH monitored by the mobile weather station are presented in Fig. 5. The 

aethalometer data was averaged on 30 s and the RH correction to scattering coefficients (Eq. (1) in Sect. 2.2) was applied to 

the nephelometer data in order to compute the ambient (wet) extinction coefficients at surface level. The a and b parameters 285 

in Eq. (2) used for the RH correction are as follows: i) 𝑎 = 2.3 and 𝑏 = 6.27 for the polluted aerosol type according to Pan 

et al. (2009) on the pollution segments of the mobile transect (08:40-12:00 and 13:30-16:00 local time) and ii) 𝑎 = 3.26 and 

𝑏 = 3.27, following Liu et al. (2008) for mixed urban-marine aerosols for the transects with sea salt intrusion (12:00-13:30 

local time). The mean absorption, scattering (wet) and extinction at surface level were 0.05 ± 0.03 km-1, 0.24 ± 0.11 km-1 and 

0.29 ± 0.12 km-1 respectively, where the standard deviations represent the spatio-temporal variability along the route. An 290 

https://doi.org/10.5194/acp-2020-1269
Preprint. Discussion started: 4 May 2021
c© Author(s) 2021. CC BY 4.0 License.



15 
 

increase of both scattering and absorption coefficients is observed in the 12:00-13:30 time interval, when scattering rises as 

high as 0.83 km-1 and absorption up to 0.22 km-1. The mean SSA (Single Scattering Albedo) for the whole transect was 0.84 

± 0.07. 

Figure 6 shows the comparison between the in situ extinction coefficients at surface level and the lidar-derived extinction at 

210 m altitude (retrieved using a constant extrapolation in the inversion). Both dry and ambient (wet) extinction coefficients 295 

from in situ data are depicted in order to show the impact of the 𝑓(𝑅𝐻) correction on the segments where the RH > 50%. 

The lidar-derived extinction coefficients at 210 m altitude agree very well with the in situ extinction at surface level. This 

good agreement between lidar and in situ gives confidence in the overlap correction used for the lidar data and shows that 

the assumption of homogeneity from the surface up to ~200 m altitude (constant extrapolation) is reasonable for most of the 

mobile measurements. Significant differences are observed in the 12:00-13:30 time interval, probably due to the 300 

inhomogeneity of the aerosol distribution from ground to 200 m altitude. The extinction in this time interval measured by in 

situ and corrected for RH effects, is on average 2 times higher than the lidar-derived extinction. The differences could be 

explained by the strong increase in particle concentration and/or change in aerosol type only at the surface level and not be 

« seen » at 200 m altitude by the lidar. Secondly, the aerosol mixture assumption and the 𝑓(𝑅𝐻) correction applied to the 

nephelometer data could be not appropriate, resulting in an overestimation of scattering coefficients. The lidar-derived 305 

extinction coefficients at surface level are highly correlated with the extinction measured by in situ with R2 of 0.98, slope of 

0.91 and RMSE of 0.03 all along the transect excluding the values in the 12:00 – 13:30 time interval. The correlation 

decreases when including the values in this time interval (R2 of 0.9, slope of 0.53, RMSE of 0.08). 

3.2.4 Columnar volume size distribution  

The total column aerosols volume size distributions (VSD) retrieved with GRASP-AOD from PLASMA sun photometer 310 

measurements are presented in Fig. 7c-d. Spectral AOD (Fig. 7b) and AE (Fig. 7a) from PLASMA measurements averaged 
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on 30 minutes transects, as in Fig. 4a, are also presented. The inversion requires the assumption of the refractive index and of 

the sphere fraction. Assumptions on the aerosols chemical composition were made based on the modes identified in the in-

situ-derived size distributions at surface level. An important contribution of elemental carbon (EC), organic carbon (OC) and 

sulphates was considered, indicated by the narrow fine mode peak at 0.28 μm, followed by a nitrates component, suggested 315 

by the coarse mode centered at 3.5 μm, a small contribution of dust in altitude (from lidar data and backward trajectories 

analysis) and sea salt contribution during the sea breeze event. According to a study conducted in Tianjin, in spring 2009 

(Han et al., 2012), an average refractive index of 1.52-0.018i was found for a similar aerosol mixture as in our case. For the 

retrievals, the assumption of spherical particles and a complex refractive index of 1.52-0.008i were used for most of the 

transect. A lower absorption (imaginary part) was considered taking into account that desert dust was present in the free 320 

troposphere. For the part along the coast (12:00-13:30) a complex refractive index of 1.46-0.008i was used, considering the 

RH effect on aerosols and the sea breeze event, following the results from Schuster et al. (2009) for the aerosol types in our 

case (fine particles that are predominantly sulphates) and for the maximum relative humidity (60 – 65%). The columnar size 

distributions present two modes, fine and coarse, centered at 0.3 μm and 3.4 μm diameter, respectively. The size distributions 

do not change significantly over the mobile transect, except for an increase in both fine and coarse modes concentrations 325 

when reaching the polluted coastal region. The increase in fine mode can be explained by higher particle number 

concentrations as discussed in Sect. 3.2.2 and the increase in coarse mode along the coast could be explained by the sea salt 

intrusion during the sea breeze and increase of the nitrates component. The change in particle size is shown by both AE (Fig. 

7a) and VSD (Fig. 7c). The highest AE values and slightly higher fine mode were observed in Tianjin, followed by a 

decrease in AE and an increase of coarse mode in the VSD between 10:00 and 11:30. In the coastal industrial region, the 330 

concentrations of both fine and coarse modes increase significantly and AE increases but is still lower than at Tianjin due to 

an important contribution of coarse mode. The columnar aerosol fine mode concentrations increase by two times in the 
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12:00-13:30 time interval, consistent with what is seen at the surface level. Both in situ and columnar VSD present the same 

positions of the fine and coarse modes diameter at 0.3 and 3.5 μm, respectively, which shows that the two major aerosol 

contributions in the fine mode were sulphates and black carbon (BC) and nitrates in the coarse mode. 335 

3.2.5 Extinction coefficient profiles 

The spatial variability of the extinction coefficients profiles at 532 nm derived from the synergy of lidar and sun photometer 

measurements is represented in Fig. 8a. The lidar Klett inversion constrained by AOD was used to get the extinction profiles 

and the in situ constraint between surface and 200 m altitude. The mean extinction coefficient in the PBL, from the surface 

to about 2000 m, was 0.14 ± 0.10 km-1 along the whole transect from Tianjin to Tangshan and extinction reaching a 340 

maximum of 0.56 km-1 when passing by the industrial coastal region. Table 3 presents the summary of the derived variables, 

the mean extinction coefficients, lidar ratios and mass concentrations up to 2000 m altitude for each transect in Fig. 4a. The 

standard deviations depict the spatio-temporal variability for each segment. The highest extinction coefficients were found 

near Tianjin city and along the industrial Binhai New Area along the coast of Bohai Sea. Some examples of extinction 

coefficient and mass concentration profiles along the route are depicted in Fig. 9: at Tianjin (08:55), between Tianjin and 345 

Binhai New Area (10:50), when crossing a salt pan (12:30), when crossing Tianjin port (13:00) and near Tangshan (15:20).  

In the free troposphere, an elevated aerosol layer at 2200–3500 m was observed all along the mobile transect. The HYSPLIT 

backward trajectories at 0 m, 500 m and 3000 m, starting at 13:00 local time (05:00 UTC), illustrated in Fig. 8b, show that 

the layer at about 3000 m is transported from Inner Mongolia while the aerosols in the PBL have a local origin. The 

separation of the elevated dust layer (Fig. 10) has been done using the first derivative of the extinction profiles and applying 350 

a threshold to separate the aerosol contributions above PBL. The mean extinction coefficient of the dust layer was 0.05 ± 

0.03 km-1, with a maximum of 0.15 km-1 at 2900 m around 10:30. The mean AOD at 532 nm of the dust layer is 0.06 ± 0.01, 

which represents 18-20% of the total measured AOD. 
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The variability of height-independent extinction-to-backscatter ratio or lidar ratios (LR) at 532 nm derived from lidar-sun-

photometer inversions is presented in Table 3 for each segment of the mobile transect. The standard deviations correspond to 355 

the spatio-temporal variability in each segment. The LR values decrease from 66 ± 10 sr at Tianjin to 35 ± 12 sr when 

crossing the Binhai New Area and then increase again to 57 ± 14 sr near Tangshan. The decrease in the LR indicates a 

change in the aerosol type. The LR around 60 sr, found at Tianjin and Tangshan, are characteristics for urban-industrial 

aerosol type (Cattrall et al., 2005; Müller et al., 2007) while the LR around 40 sr correspond to a marine aerosol type 

(Ackermann, 1998; Müller et al., 2001, 2007). In our case it is most probably a mixture of continental polluted and marine 360 

polluted aerosols (considering the sources along the coast), with a contribution of desert dust in altitude. The values found at 

Tianjin and Tangshan are consistent with a study in Shangdianzi, located in the northern part of the North China Plain, where 

a mean LR of 60 sr was found (Hänel et al., 2012). The LR found along the coast are similar to the values of 33 ± 14 sr 

found at a site on the French coast (Boyouk et al., 2011) and of 40 sr found on the Portuguese coast (Ansmann et al., 2001). 

Both studies evidenced the presence of a sharp peak in the backscatter signal in the marine boundary layer ranging between 365 

200 and 650 m when the air masses were coming from the sea direction, which is similar to what is observed in our case, a 

strong increase in the scattering coefficients below 200 m when reaching the coast. The sea salt presence in the atmosphere 

in this region is evident as salt pans are located at the places where the peaks were observed. The Tianjin municipality has a 

long history of sea salt exploitation and there were still two saltpans exploited at that time according to (Wang et al., 2015), 

illustrating the coastal landscape map of Tianjin Binhai New Area in 2013. The strong increase of extinction coefficients 370 

seen below 200 m and decrease of the columnar LR correspond to the time intervals when the mobile system was crossing 

the salt pans and could be linked to a strong presence of sea salt.  
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3.2.6 Mass concentration profiles 

The vertical profiles of aerosols total mass concentration derived from lidar measurements using the Mass Extinction 

Efficiency (MEE) approach described in Sect. 2.2 are presented in Fig. 10. For this method we used complementary 375 

information on the aerosol volume size distributions (VSD), particle density (r) and complex refractive index (CRI). The 

mean columnar VSD derived from sun photometer measurements showed an almost equal contribution of fine and coarse 

mode particles all along the mobile transect. For the estimations of the mass concentration, the parameters of the mean VSD 

were used (Table 4).  Using the aerosol properties previously discussed, we defined an urban-industrial aerosol model for the 

particles inside the PBL, up to 2000 m, and a desert dust model for the dust layer at 2200-3500 m. The parameters for the 380 

urban-industrial aerosol model are summarized in Table 4. As shown is Sect. 3.2.5, the dust layer in the free troposphere was 

found to be around 20% of the total AOD, so from the total column coarse particles. This contribution was subtracted from 

the total coarse VSD and the rest of the VSD was considered as characteristic for the aerosols in the PBL (< 2000 m). A bi-

modal VSD and a ratio of coarse-to-fine mode particles concentration (Cc/Cf) of 0.8 was used for the mass calculations for 

the PBL. The average particle density was calculated based on the chemical composition (sulphate, nitrate, EC, OC, residue) 385 

and correspondent particle densities (1.76, 1.73, 2, 1.4, 2.3 g cm-3) following Han et al. (2012), and using the sea salt density 

(1.3 g cm-3) as in Tsekeri et al. (2017). A value of 1.75 g cm-3 was obtained for particles inside the PBL. The CRI used for 

the mass calculations was 1.52-0.008i. For the dust aerosol model, we used a mono-modal coarse mode VSD, a CRI of 1.5 −

0.005i and a particle density of 2.6 g cm-3, characteristic for desert dust. The standard deviations of the parameters in Table 4 

correspond to the variability of the retrieved VSD presented in Fig. 7d and were propagated to the calculations, to show the 390 

impact of different parameters on the mass concentrations estimations (Table 4). An MEE of 1.79 m2 g-1 was found for the 

fine-dominant aerosol model in the PBL and an MEE of 0.54 m2 g-1 for the dust layer. Other studies found MEE values of 

0.5-1.09 m2 g-1 for Saharan dust (Córdoba-Jabonero et al., 2016). For fine particles, a higher MEE (2.87-6.64 m2 g-1) was 
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found for PM2.5 in cities in China (Cheng et al., 2017), but in our case the size distribution shows an important contribution 

of both coarse and fine particles.  395 

Some examples of mass concentration profiles are presented in Fig. 9. The mean mass concentration in the dust layer was 95 

± 52 µg m-3 with a maximum of 284 µg m-3. The mean total mass concentration in the PBL, for different segments along the 

mobile transect, is presented in Table 4 and is around 80 ± 62 µg m-3 for the whole transect. The standard deviations 

represent the variability along each transect segment. The highest particle mass concentrations were recorded near Tianjin 

city, until 09:30, and when crossing the industrial coastal region, from 12:00 to 14:00. The PM10 and PM2.5 fractions of the 400 

total particle mass concentrations were calculated as the percentage of particles with Dp < 10 µm and Dp < 2.5 µm, 

respectively, from the total volume concentration of the VSD defined for aerosols in the PBL. Using this method, it was 

found that the PM10 and PM2.5 represented 95 % and 56 %, respectively, of the total mass. The lidar-derived PM10 and PM2.5 

mass concentrations at surface level and the hourly PM10 and PM2.5 recorded at air quality (AQ) stations along the mobile 

transect are presented in Fig. 11. The PM10 and PM2.5 measured at the AQ stations closest to the mobile transect were 405 

considered. Despite all the limits for a direct comparison with AQ measurements and the uncertainties and assumptions used 

for the calculations, there is a rather good agreement between the lidar-derived mass and AQ measurements. 

The estimation of aerosol mass concentration is a complex issue involving numerous assumptions, namely the particles size 

distribution, particles shape, chemical composition, mixing state and the homogeneity and stationarity of all these parameters 

with height. Thus, the associated uncertainties are also difficult to be evaluated. In this study, the standard deviation of each 410 

parameter given in Table 4 was used as a measure of the uncertainty. To this adds the uncertainty on the extinction profiles, 

considered to be 25%.	 The highest uncertainty is introduced by the assumed particle density, with an impact of 20 %, 

followed by the complex refractive index, with an impact of 13 % on the mass concentration. Considering the errors as 

statistically independent, an overall uncertainty of 32 % was evaluated for mass concentration profiles. The levels recorded 
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at AQ are within the uncertainty of the estimated mass concentrations. In order to give an order of magnitude for the 415 

difference between the air quality and the lidar-derived mass concentrations, a mean difference was calculated considering 

the hourly means from AQ stations and the closest value in time from lidar data. A mean difference of 10 % and 42 % was 

obtained for PM10 and PM2.5, respectively. This comparison is only indicative, since the hourly mean concentrations 

recorded at air quality stations are not directly comparable with the 1-minute mass concentrations from mobile 

measurements. Despite all the assumptions and uncertainties involved in the mass concentration calculations, we believe that 420 

the advantages of this method for lidar community and for aerosol data modelling outweigh its limitations. 

4 Conclusions  

Numerous studies on air pollution have already been performed in North China Plain region, although, there are none 

conducting measurements during motion with mobile lidar and mobile sun photometer. The novelty of this study consists in 

observations with a mobile vehicle equipped with lidar, sun photometer and in situ instruments (nephelometer, aethalometer, 425 

particle counter) deployed to capture the aerosols spatial distribution in Beijing and NCP. Constraining the lidar inversion 

with a lidar ratio (LR) computed using the AOD measured by the sun photometer is closer to reality than inversion with a 

pre-defined constant LR for all profiles, that might not be relevant for the aerosol spatial variability observed along a mobile 

transect. Most lidars do not see well close to the surface, and therefore miss important part of the boundary layer. 

Photometers measure all the atmospheric column, including this layer never seen by lidar or not accurately seen by lidar. In 430 

situ data at surface level complement the missing information from lidar. The combination lidar-photometer-in-situ is the 

only way to profile properly the entire aerosol column, which is presented in this study. In addition, there is a European 

effort made in the frame of ACTRIS (Aerosol Cloud and Trace Gas infrastructure) research infrastructure, to put these three 
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distinct communities (lidar, photometer and in situ) working together since synergies are the solution for future and open the 

way to many new applications. For example, this method is applicable to fixed sites having in situ, lidar and sun photometer.  435 

The applications of such mobile system having lidar and sun photometer are numerous. Mapping AOD with a mobile sun 

photometer allows the validation of satellite measurements at different scales; no other instrument at ground can do that 

spatially in so many points. Studies showing profiles of aerosol mass concentration are scarce in the literature. The new 

scientific results presented in this study are profiles of aerosols mass concentration (not only at surface level) computed 

using an improved method (lidar, sun photometer and in situ), that allows more accurate calculations, compared to other 440 

methods. Different aerosol plumes (smoke, dust, volcanic) and their variability can be tracked spatially to the source and 

their contribution (AOD, mass concentration) to the vertical profile evaluated. We showed the added value of such mobile 

system through the MOABAI campaign.  

A summary of the various atmospheric situations (clean, pollution, dust) observed during MOABAI campaign and of the 

AOD, Angstrom Exponent and PBL height was given. A comprehensive analysis focused on a case study in a heavily 445 

polluted and complex area, between Tianjin and Tangshan cities and the Tianjin port (Binhai New Area) was presented. 

Profiles of aerosols mass concentration were derived from lidar-sun-photometer-in-situ synergy. Using the columnar volume 

size distribution retrieved from AOD sun photometer measurements, we evaluated the PM10 and PM2.5 fractions of the total 

mass concentrations at ground level, which compare well to the air quality measurements. The results presented show the 

potential capabilities of lidar measurements for air quality applications, such as mapping spatially the PM10 and PM2.5 450 

concentrations at surface level and vertically using a mobile system. Mass concentration profiles of dust, volcanic ash and 

smoke plumes and their spatial distribution are key parameters for different authorities. These measurements are valuable for 

aviation alerts in case of disruptive events (such as volcanic ash intrusions) and tracking aerosols dynamics and regional 
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transport, useful for air quality modelling. The results of this work demonstrate that a mobile instrumented vehicle is an 

excellent tool for the real-time characterization of aerosol variability and of pollution levels both spatially and vertically. 455 

As perspective to improve the mass concentration profiles, depolarization and spectral lidar measurements will be used to 

better characterize the aerosol types on the vertical profile. This will be achieved with the dual-wavelength, depolarization 

micro-lidar CIMEL CE376, which was deployed for mobile on-road measurements of smoke in FIREX-AQ (Fire Influence 

on Regional to Global Environments and Air Quality) campaign in northwestern US in summer 2019, and for stationary 

measurements during COBIACC (Campagne d’Observation Intensive des Aérosols et précurseurs à Caillouël-Crépigny) 460 

campaign in France (also in summer 2019), focused on monitoring of background and transported aerosols at a rural site. 

The mobility of sun photometers is advancing also. On one side, the Cimel CE318-T sun-sky-lunar photometer has already 

been involved successfully in shipborne campaigns (Yin et al., 2019) and was also deployed during FIREX-AQ for mobile 

car measurements. On the other side, the development of an Advanced PLASMA instrument, performing sun and sky 

measurements, is in progress. Recently, in France, Marion Dufresne ship in operation in the Indian Ocean has been equipped 465 

with such Cimel CE318-T mobile photometer to measure on a permanent basis what AERONET usually measures at a fixed 

site. In a second step a lidar will be set up also on this mobile exploratory platform. This is opening a new era for mobile 

automatic lidar and photometer joint observations, really needed to upgrade the MAN (Maritime Aerosol Network, maritime 

branch of AERONET) still relying on manual measurements. These additional examples show that the number of 

applications is increasing to which the ACTRIS European effort will contribute with the development of such lidar-470 

photometer retrievals.  
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Data availability. The HYSPLIT dispersion model is available in the NOAA ARL site 

(https://ready.arl.noaa.gov/HYSPLIT.php). The data may be accessed at http://dx.doi.org/10.17632/tghdvvhtdx.1 (Popovici, 475 

Ioana (2021)) 
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Table 1 Instrumentation set up in the IAP mobile laboratory for the MOABAI campaign in North China Plain. The aerosol 

properties in italic represent the derived properties using inversion algorithms 685 

 

Instrument 

 

Make and model 

 

Wavelength (nm) 

 

Temporal 

resolution 

Aerosol 

physical/chemical/optical 

properties 

 

Uncertainty 

Micro pulse 

LIDAR 

CE370, CIMEL 532 30 sec Vertical profile  

(Attenuated backscatter) 

(Extinction coefficient 

Mass concentration) 

 

15%  

25% 

35-45% 

PLASMA  

sun photometer 

#650, LOA 340, 380, 440, 500, 

675, 870, 940, 

1020, 1640 

10 sec Column-integrated optical 

properties  

(AOD, Angstrom Exponent, 

precipitable water) 

(Volume Size Distribution) 

 

 

2% (VIS/NIR) 

3% (UV) 

10-20% 

Nephelometer 

(3-l) 

Aurora 4000, 

Ecotech 

450, 525, 635 30 sec Scattering coefficient - 

Aethalometer 

(7-l) 

AE33,  

Maggee Scientific 

370, 470, 520, 590, 

660, 880, 950 

1 sec Absorption coefficient 

BC concentration 

- 

Optical Particle 

Counter 

(0.25-32 μm) 

Sky-OPC model 

1.129, GRIMM 

Aerosol Technik 

655 6 sec Number concentration 

Number size distribution 

PM1, PM2.5, PM10 

5% 

NO-NO2-NOx 

analyser 

42i, Thermo 

Electron 

n/a 10 s NO-NO2-NOx concentration 1% 

SO2 analyser 43i, Thermo 

Electron 

n/a 10 s SO2 concentration 1% 

O3 analyser 49i, Thermo 

Electron 

n/a 20 s O3 concentration 1% 

Weather station Airmar n/a 1 sec Pressure, temperature, 

relative humidity, wind 

speed/direction 

- 
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Table 2 Summary of mobile transects, dates and aerosol properties observed during the MOABAI mobile measurements: AOD at 

440 nm and Angstrom Exponent (AE) measured by PLASMA sun photometer and PBL height as measured by lidar 

Mobile transect Date	 AOD (440 nm) AE (440-870 nm) PBL height, km 

Beijing, 4th ring road 9 May 2017 0.62 – 0.84 0.67 – 0.87 1.7 – 2.2 

Beijing, 5th ring road 11 May 2017 0.24 – 0.55 -0.03 – 0.27 1.5 – 3.6 

Beijing, 5th and 6th ring road 13 May 2017 0.08 – 0.16 0.41 – 0.83 1.2 – 3.9 

Beijing-Baoding-Tianjin (AB) 16 May 2017 0.2 – 0.55 1 – 1.24 0.3 – 1.7 

Tianjin-Tangshan (BC) 17 May 2017 0.3 – 0.79 1 – 1.9 0.3 – 1.3 

Tangshan-Beijing (CA) 18 May 2017 0.43 – 1.34 1.22 – 1.74 1 – 1.6 

Beijing, 5th ring-road 19 May 2017 1.47 – 1.9 1.21 – 1.51 0.5 – 1 

Table 3. Mean aerosol extinction coefficients and lidar ratios (LR) at 532 nm derived from Klett AOD-constraint lidar inversions 

and mass concentrations in the PBL (0-2000 m), for each time interval correspondent to transect segments depicted in Fig. 4a. The 690 

standard deviations correspond to the spatio-temporal variability within each transect segment.  

Time interval 𝛔𝐞𝐱𝐭 (km-1) 𝐋𝐑 (sr) Mass concentration (µg m-3) 

08:40 - 09:00 0.14 ± 0.15 66 ± 10 80 ± 85 

09:00 - 09:30 0.15 ± 0.15 59 ± 17 85 ± 82 

09:30 - 10:00 0.13 ± 0.10 56 ± 10 75 ± 57 

10:00 - 10:30 0.14 ± 0.07 52 ± 12 80 ± 41 

10:30 - 11:00 0.13 ± 0.06 50 ± 11 74 ± 34 

11:00 - 11:30 0.14 ± 0.06 43 ± 14 78 ± 33 

11:30 - 12:00 0.1 ± 0.06 46 ± 14 57 ± 34 

12:00 - 12:30 0.18 ± 0.09 40 ± 13 100 ± 50 

12:30 - 13:00 0.16 ± 0.13 35 ± 12 88 ± 72 

13:00 - 13:30 0.15 ± 0.13 39 ± 11 83 ± 71 

13:30 - 14:00 0.15 ± 0.13 45 ± 11 87 ± 74 

14:00 - 14:30 0.13 ± 0.11 42 ± 8 73 ± 60 

14:30 - 15:00 0.13 ± 0.12 52 ± 12 71 ± 65 

15:00 - 15:30 0.13 ± 0.12 47 ± 11 75 ± 66 

15:30 - 16:00 0.13 ± 0.11 57 ± 14 71 ± 59 
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Table 4. Parameters used for the calculations of mass concentration: modal radius for fine, 𝐫𝐦𝐟, and coarse, 𝐫𝐦𝐜, mode, in μm, the 

geometric standard deviation for fine,	𝛔𝐟, and coarse, 𝛔𝐜, mode, the ratio of volume concentration of coarse to fine mode, 𝐂𝐜 𝐂𝐟⁄ , 

the particle density, 𝛒, in g cm-3, the real part of the refractive index, 𝐦𝐫 and the imaginary part of the refractive index, 𝐦𝐢. 695 

 𝒓𝒎𝒇 𝒓𝒎𝒄 𝝈𝒇 𝝈𝒄 𝑪𝒄 𝑪𝒇⁄  𝝆 𝒎𝒓 𝒎𝒊 

mean 0.13 1.66 0.43 0.68 0.8 1.75 1.5 0.01 

std 0.01 0.03 0.01 0.03 0.1 0.34 0.05 0.005 

impact on 

mass (PBL) 

7 % 0.5 % 0.7 % 0.6 % 4 % 20 % 13 % 1 % 

impact on 

mass (dust) 

- 2 % - 3 % - 20 % 1 % 0.1 % 

 

 

 

 

 700 
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Figure 1: (a) Map of China and neighbour regions showing North China Plain (red rectangle) and area investigated through 

mobile measurements (blue rectangle), (b) GPS track of all mobile transects and (c) IAP’s instrumented van used for the mobile 

observations; photograph taken at night on 17 May 2017 at Guye (39.71° N, 118.37° E), near Tangshan. 705 
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Figure 2. Spatial variability of AOD at 440 nm and (top panels) and Angstrom Exponent (AE) between 440 and 870 nm (bottom 710 

panels), derived from PLASMA sun photometer measurements. The A, B and C (Fig. 2d and 2k) denote the departure and end 

points for the three transects: Beijing-Tianjin (AB) on 16 May 2017, Tianjin-Tangshan (BC) on 17 May 2017 and Tangshan-

Beijing (CA) on 18 May 2017. Please note that the color scale for the AOD maps is different for each transect in order to show the 

fine spatial variability. 

 715 
Figure 3. (Top panels) Spatio-temporal and vertical variability of aerosol layers and clouds, colour-coded by lidar Range 

Corrected Signal (RCS) as measured along the mobile transects detailed in Table 2, (Middle panels) AOD at 440 nm and (Bottom 

panels) PBL height.  
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Figure 4. (a) GPS track of the mobile transect from Tianjin to Tangshan color coded by 30 minutes time intervals (local time, 720 

UTC+8 h) and (b) particle volume size distributions measured by Grimm Sky-OPC, averaged on 30 minutes transect segments. 

(a) (b) 
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Figure 5. Spatio-temporal variability of (a) particle volume size distribution as measured by Grimm Sky-OPC, (b) scattering 

coefficient measured by nephelometer (black), scattering coefficient corrected for relative humidity effect (green), absorption 

coefficient derived from aethalometer measurements (light blue), extinction coefficient computed from nephelometer and 725 

aethalometer measurements (magenta) and (c) temperature (T) (black) and relative humidity (RH) (blue) measured by the 

weather station along the mobile transect from Tianjin to Tangshan on 17 May 2017. 
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Figure 6. Spatio-temporal variability of aerosol extinction coefficient at 525 nm derived from in situ measurements (nephelometer 

and aethalometer) with no correction for RH (black) and with 𝒇(𝑹𝑯)  correction (magenta) and lidar-derived extinction 730 

coefficients at 532 nm at 210 m altitude (green). The green shaded area represents the uncertainty on the derived extinction 

coefficient. 
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Figure 7. Spatio-temporal variability of (a) Angstrom Exponent (AE), (b) spectral AOD, (c) total column volume size distributions 

retrieved with GRASP-AOD for every transect segment and (d) columnar volume size distributions for some time intervals along 735 

the mobile transect. All size distributions are averaged on 30 minutes time intervals and can be localized on the mobile transect 

using the map color coded by local time shown in Fig. 4a. 
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Figure 8. (a) 3-D representation of the lidar-derived extinction coefficients profiles at 532 nm along the mobile transect from 740 

Tianjin to Tangshan and (b) 72 h backward trajectories (Stein et al., 2015 ; HYSPLIT, 2018) arriving at a point along the mobile 

transect, near Tianjin port (38.82° N, 117.59° E) on 17 May 2017, 05:00 UTC at heights of 0 m (red), 500 m (blue) and 3000 m 

(green) above ground level. 
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Figure 9. (Left) Aerosol extinction coefficient profiles and lidar ratios at 532 nm and (Right) total mass concentrations profiles for 745 

different times along the mobile transect: 08:55 (a, b), 10:50 (c, d), 12:30 (e, f), 13:00 (g, h) and 15:20 (i, j), local time. The 

extinction profiles were derived using the in situ constraint corrected for RH. 
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Figure 10. Aerosols total mass concentration profiles derived using the MEE approach on 17 May 2017 along the transect from 

Tianjin to Tangshan (BJT=Beijing time). The calculations were done considering a dust aerosol model for the layer in the 2000-750 

3500 m range and an urban-industrial aerosol model for the rest of the profile.  
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Figure 11. Spatio-temporal variability of (a) PM10 (green) and (b) PM2.5 (red) at surface level derived from lidar profiles and the 

mean hourly PM10 (magenta) and PM2.5 (cyan) measured at the closest air quality (AQ) stations to the route (BJT=Beijing time).  

The shaded area on each curve represents the uncertainty of 32% on the lidar-derived mass concentrations. 755 
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