Preprints
https://doi.org/10.5194/acp-2019-2
https://doi.org/10.5194/acp-2019-2
15 Jan 2019
 | 15 Jan 2019
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Impact of Atmospheric and Aerosol Optical Depth Observations on Aerosol Initial Conditions in a strongly-coupled data assimilation system

Milija Zupanski, Anton Kliewer, Ting-Chi Wu, Karina Apodaca, Qijing Bian, Sam Atwood, Yi Wang, Jun Wang, and Steven D. Miller

Abstract. Strongly coupled data assimilation frameworks provide a mechanism for including additional information about aerosols through the coupling between aerosol and atmospheric variables, effectively utilizing atmospheric observations to change the aerosol analysis. Here, we investigate the impact of these observations on aerosol using the Maximum Likelihood Ensemble Filter (MLEF) algorithm with Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) which includes the Godard Chemistry Aerosol Radiation and Transport (GOCART) module. We apply this methodology to a dust storm event over the Arabian Peninsula and examine in detail the error covariance and in particular the impact of atmospheric observations on improving the aerosol initial conditions. The assimilated observations include conventional atmospheric observations and Aerosol Optical Depth (AOD) retrievals. Results indicate a positive impact of using strongly coupled data assimilation and atmospheric observations on the aerosol initial conditions, quantified using Degrees of Freedom for Signal.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Milija Zupanski, Anton Kliewer, Ting-Chi Wu, Karina Apodaca, Qijing Bian, Sam Atwood, Yi Wang, Jun Wang, and Steven D. Miller
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Milija Zupanski, Anton Kliewer, Ting-Chi Wu, Karina Apodaca, Qijing Bian, Sam Atwood, Yi Wang, Jun Wang, and Steven D. Miller
Milija Zupanski, Anton Kliewer, Ting-Chi Wu, Karina Apodaca, Qijing Bian, Sam Atwood, Yi Wang, Jun Wang, and Steven D. Miller

Viewed

Total article views: 1,778 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,341 359 78 1,778 76 79
  • HTML: 1,341
  • PDF: 359
  • XML: 78
  • Total: 1,778
  • BibTeX: 76
  • EndNote: 79
Views and downloads (calculated since 15 Jan 2019)
Cumulative views and downloads (calculated since 15 Jan 2019)

Viewed (geographical distribution)

Total article views: 1,698 (including HTML, PDF, and XML) Thereof 1,695 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Nov 2024
Download
Short summary
The problem of under-observed aerosol observations and in particular the vertical distribution of aerosols is addressed using a strongly coupled atmosphere-aerosol data assimilation system. In the strongly coupled system the atmospheric observations, which are more numerous in general, can impact the aerosol initial conditions. In an application over a coastal zone, results indicate that atmospheric observations have a positive impact on aerosols.
Altmetrics