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Abstract. Strongly coupled data assimilation frameworks provide a mechanism for including additional information about 15 
aerosols through the coupling between aerosol and atmospheric variables, effectively utilizing atmospheric observations to 
change the aerosol analysis. Here, we investigate the impact of these observations on aerosol using the Maximum Likelihood 
Ensemble Filter (MLEF) algorithm with Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 

which includes the Godard Chemistry Aerosol Radiation and Transport (GOCART) module.   We apply this methodology to 
a dust storm event over the Arabian Peninsula and examine in detail the error covariance and in particular the impact of 20 
atmospheric observations on improving the aerosol initial conditions. The assimilated observations include conventional 
atmospheric observations and Aerosol Optical Depth (AOD) retrievals. Results indicate a positive impact of using strongly 
coupled data assimilation and atmospheric observations on the aerosol initial conditions, quantified using Degrees of 

Freedom for Signal.  
 25 
 
1 Introduction 
 

Efforts in assimilating atmospheric aerosol and chemistry observations into numerical models have involved mostly 
variational data assimilation applications into global models (Zhang et al., 2008; Uno et al., 2008; Benedetti et al., 2009) and 30 
regional models (Pagowski et al., 2010; Liu et al., 2011). In addition, column-integrated aerosol data assimilation schemes 
(Weaver et al., 2007; Zhang et al., 2008) offer capabilities similar to the standard three-dimensional variational (3D-Var) and 

four- dimensional variational (4D-Var) methods, but with improved efficiency. One difficulty associated with variational 
methods is the modeling of forecast error covariance for aerosol/chemistry variables, prompting the use of Ensemble Kalman 
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Filter (EnKF) data assimilation methods (Pagowski and Grell, 2012; Rubin et al., 2016, 2017), which employ a flow-
dependent error covariance. With the development of hybrid variational-ensemble methods, the improved representation of 

forecast error covariance and the ability of data assimilation to address nonlinear interactions have enabled the emergence of 
hybrid aerosol data assimilation applications (Schwartz et al., 2014; Pagowski et al., 2014).  
 5 
Prediction models used for the simulation of aerosol fields are typically coupled with the atmosphere, and possibly 
chemistry, which creates an opportunity to employ strongly coupled data assimilation for advancing aerosol data assimilation 

in such complex systems (e.g., Zupanski, 2017). Un this research, we are mostly interested in aerosol data assimilation and 
prediction in the coastal regions. Since physical processes and interactions in the coastal zone are complex and time 
dependent, the representation of forecast error covariance in data assimilation should include a flow-dependent component. 10 
Therefore, an ensemble and/or hybrid ensemble-variational data assimilation system is preferable for such applications. In 
addition, a reliable three-dimensional picture of aerosol fields requires some information in the vertical. This can be achieved 

by using observations that have vertical distribution. However, Aerosol Optical Depth (AOD) observations assimilated in 
this work are vertically integrated and therefore do not include information about the vertical distribution of aerosol. A 
strongly coupled atmosphere-aerosol data assimilation frameworks provide a mechanism for including additional 15 
information in the vertical through the coupling between aerosols and atmospheric variables, effectively utilizing 

atmospheric observations to change the aerosol analysis. Since atmospheric observations are much more widely available 
than aerosol observations, and since they often include information in the vertical, in principle they can help improve 3-D 
aerosol analysis. As a side benefit, strongly coupled data assimilation (DA) acts as an additional constraint that controls 
adjustments in the analysis.  20 
 

In this paper, we demonstrate the use of a strongly coupled atmosphere-aerosol data assimilation system and include a 
detailed examination of the coupled error covariance and the impact of atmospheric observations on improving aerosol initial 
conditions. The manuscript is organized as follows. In section 2 we present the data assimilation methodology and in section 
3 we describe the coupled model and the observations. The experimental design is presented in section 4, results are 25 
discussed in section 5, and in section 6 we summarize and draw conclusions. 

 
 
2 Data Assimilation Methodology 
 30 
In this section we describe the mathematical basics of the employed data assimilation algorithm and of the strongly coupled 

DA.   
 
2.1 Maximum Likelihood Ensemble Filter (MLEF) 
 35 
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The Maximum Likelihood Ensemble Filter (Zupanski, 2005; Zupanski et al., 2008) is a hybrid ensemble-variational method 
with explicit iterative minimization. It is well-suited for high-dimensional and nonlinear applications such as aerosol DA. It 

includes iterative minimization to deal with nonlinearities, similar to variational methods. However, unlike variational 
methods, it has an optimal Hessian preconditioning that not only provides very fast minimization (e.g., 1-2 iterations in most 
applications) but also a reliable estimate of the analysis error covariance used to define ensemble forecast initial 5 
perturbations. MLEF has been applied to high-resolution complex modelling systems that couple clouds, aerosols, carbon, 
and chemistry (Lokupitiya et al., 2008; S. Zhang et al., 2013; M. Zhang et al., 2013; Peters-Lidard et al., 2015; Park et al., 

2015; Lim et al., 2015; Lee et al., 2017). Mathematical details of the MLEF algorithm can be found in Zupanski et al. 
(2008). Here we briefly mention relevant characteristics of MLEF.  
 10 
The MLEF analysis is the maximum-a-posteriori (MAP) estimate obtained by minimizing the cost function 
 

𝐽(𝒙) = &
'
[𝒙 − 𝒙*],𝑷*.&[𝒙 − 𝒙*] +

&
'
[𝒚 − ℎ(𝒙)],𝑹.&[𝒚 − ℎ(𝒙)],      (1) 

 

where 𝒙 is a state vector, y is an observation vector, ℎ: 𝑆 → 𝑂   is a nonlinear observation operator (where → denotes 15 

mapping, from space S to space O in this case), S denotes the state space with dimension 𝑁9, O is the observation space with 

dimension 𝑁:, 𝑷*: 𝑆 → 𝑆 is the forecast error covariance and 𝑹:𝑂 → 𝑂 is the observation error covariance. Superscript T 

denotes the transpose, and f denotes the forecast. Worth mentioning is that the first guess 𝒙* in MLEF is obtained as a 

deterministic forecast from the previous analysis, not as an ensemble forecast mean used in ensemble Kalman Filtering 
methods. This might be advantageous for preserving a dynamical structure in high-resolution models, such as the coupled 20 
atmosphere-aerosol model used in this study.  
 

Analysis uncertainty is estimated from the square root analysis error covariance  
 

𝑷;
&/' = 𝑷*

&/'(𝑰 + 𝒁(𝒙;),𝒁(𝒙;)).&/',         (2) 25 

 
with the matrix Z defined as 
 

𝒁(𝒙;) = [𝒛&(𝒙;), ⋯ , 𝒛AB(𝒙
;)],         (3) 

 30 

𝒛C(𝒙;) = 𝑹.
D
E[ℎ(𝒙; + 𝒑C) − ℎ(𝒙;)]												(𝑖 = 1,⋯ ,𝑁J),       (4) 

 

where 𝒑C are the columns of the square root forecast error covariance, 𝒙; is the analysis, and 𝑁J is the ensemble space 

dimension. The formulation (2) also defines optimal Hessian preconditioning, using 𝒙* instead of 𝒙;, however. After the 
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analysis is calculated by minimizing the cost function (1), the initial conditions for ensemble forecasting are obtained by 
adding the columns of the square root analysis forecast error covariance to the analysis 

 

 𝒙C = 𝒙; + K𝑷;
&/'L

C
										(𝑖 = 1,⋯ ,𝑁J).         (5) 

 5 

After evolving the analysis 𝒙; and the perturbed initial conditions (5) using a prediction model m, the columns of the square 

root forecast error covariance in the next analysis time are  
 

𝒑C = 𝑚 O𝒙; + K𝑷;
&/'L

CP − 𝑚(𝒙
;)													(𝑖 = 1,⋯ ,𝑁J).       (6) 

 10 
In high-dimensional applications, such as the one conducted in this study, MLEF includes error covariance localization to 
increase degrees of freedom (e.g., Hamill and Whitaker, 2001). In particular, we use the method described by Yang et al. 
(2009). 

2.2 Strongly Coupled Data Assimilation 

Strongly coupled data assimilation means that forecast and analysis error covariances are completely defined from ensemble 15 
forecasting, implying that any correlations between the components (e.g., atmospheric and aerosol) will be kept. A standard 
analysis solution (e.g., Lorenc, 1986) can be written as 
 

𝒙; = 𝒙* + 𝑷*𝑯,R𝑯𝑷*𝑯, + 𝑹S.&[𝒚 − ℎ(𝒙*)]        (7) 

 20 

where H is the first derivative of a nonlinear observation operator h. The coupled forecast error covariance is a 2 × 2 block 

matrix 
 

𝑷* = V
𝑷;WX,;WX 𝑷;WX,;YZ[
𝑷;WX,;YZ[, 𝑷;YZ[,;YZ[

\,          (8) 

 25 
where indices atm and aero refer to the atmospheric and aerosol components, respectively. In strong coupling, the matrix of 

cross-component correlations 𝑷;WX,;YZ[  can be non-zero. This means that the methodology allows non-zero correlations, but 

it does not necessarily imply that the actual correlations will be large, as they are defined by the dynamical system. For 
simplicity of presentation, we assume that aerosol and atmosphere observation operators are independent 
 30 

𝑯 = ]𝑯;WX 0
0 𝑯;YZ[

_.           (9) 
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Using (8) and (9), one can rewrite (7) in terms of its components 

 

]𝒙;WX
;

𝒙;YZ[; _ = V
𝒙;WX
*

𝒙;YZ[
* \ + V

𝑷;WX,;WX 𝑷;WX,;YZ[
𝑷;WX,;YZ[, 𝑷;YZ[,;YZ[

\ ]𝑯;WX
, 0
0 𝑯;YZ[

, _ ]�̀�;WX�̀�;YZ[
_,     (10) 

 5 

Where the �̀� vector represents scaled observations that already have some impact of cross-component correlations 

 

]�̀�;WX�̀�;YZ[
_ = R𝑯𝑷*𝑯, + 𝑹S.& V

[𝒚 − ℎ(𝒙*)];WX
[𝒚 − ℎ(𝒙*)];YZ[

\.        (11) 

 
After further manipulation of (10) the component-wise analysis update is 10 
 

𝒙;WX; = 𝒙;WX
* + 𝑷;WX,;WX𝑯;WX

, �̀�;WX + 𝑷;WX,;YZ[𝑯;YZ[
, �̀�;YZ[       (12) 

 

𝒙;YZ[; = 𝒙;YZ[
* + 𝑷;WX,;YZ[, 𝑯;WX

, �̀�;WX + 𝑷;YZ[,;YZ[𝑯;YZ[
, �̀�;YZ[.      (13) 

 15 
The above equations demonstrate the mechanism that allows atmospheric observations to impact the aerosol analysis, and 

vice versa. The relevant terms in this coupling are 𝑷;WX,;YZ[𝑯;YZ[
, �̀�;YZ[  in (12) and 𝑷;WX,;YZ[, 𝑯;WX

, �̀�;WX  in (13). The 

critical role of the cross-component covariance 𝑷;WX,;YZ[ is evident: if it is equal to zero there is no coupling in the analysis, 

but if non-zero then observations of one component can impact the analysis of the other component.   Additional details 
about strongly-coupled DA can be found in Zupanski (2017). 20 

 
 
3 Model and Observations 
 
3.1 WRF-Chem Model 25 

 
The employed coupled atmosphere-aerosol model is the Weather Research and Forecasting model coupled with Chemistry 
(WRF-Chem) version 3.9.1.1. As a fully coupled regional meteorology–chemistry–aerosol model, WRF-Chem can simulate 
deposition, biogenic/anthropogenic emission, mixing, transport, chemical transformation, and aerosol interactions with 
meteorological condition (Grell et al., 2005; Fast et al., 2006). Cloud microphysics is represented by the WRF-Single-30 

Moment 6-class scheme (Hong and Lim, 2006) and convective and shallow clouds of sub-grid scale are parameterized using 
the Kain-Fritsch scheme (see Kain, 2004). The Community Atmospheric Model scheme (Collins et al., 2004) is also used, 
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which allows for the simulation of aerosols and trace gases and represents short- and long-wave radiative transfers in the 
atmosphere.  

 
We chose the MOZART-4 gas-phase chemical scheme (Emmons et al. 2010) and GOCART bulk aerosol scheme (Ginoux et 
al., 2001; Chin et al., 2002) (WRF-Chem option chem_opt=12), referred to as MOZCART. The GOCART aerosol module 5 
simulates 14 aerosol species: hydrophobic and hydrophilic organic carbon and black carbon, sulphate, sea salt in four 

particle size bins with effective radii of 0.3, 1.0, 3.25, and 7.5 𝜇𝑚 for dry air, and dust particles in five particle size bins with 

effective radii of 0.5, 1.4, 2.4, 4.5, and 8.0 𝜇𝑚. The GOCART scheme calculates dust globally as a function of fraction of 

erodible area, porosity, and surface wind speed (Ginoux et al., 2001). Since MOZART-4 interacts with radiative transfer 
processes through calculation of photolysis that takes into account the impact of aerosols and clouds (Tie et al., 2003), 10 
GOCART is linked to radiative transfer processes indirectly through MOZART-4. Furthermore, GOCART itself has 

interaction with radiation related to photochemistry, and with cloud in terms of aqueous chemistry. The chemical initial and 
boundary conditions are obtained using the MOZBC utility which maps species concentrations from MOZART datasets to 
WRF-Chem concentrations.  
 15 

The model computational domain is composed of a parent domain at 27 km resolution over 172 × 138	horizontal grids and 

a nested domain at 9 km resolution over 172 × 169	grid points, located over the Arabian Peninsula. Both domains include 

50 vertical layers with a model top at 10 hPa. 
 
3.2 Atmospheric Observations 20 

 
The assimilated atmospheric observations are the conventional observations collected by the U.S. National Weather Service 
(NWS) for operational weather forecasting and assimilation. These observations are assimilated using the forward 
component of the Gridpoint Statistical Interpolation (GSI) system as an observation operator. The GSI observation operator 
is accessed from MLEF using a customized interface module. The benefit of using components of an operational weather 25 

system (e.g., GSI) is that quality control and observation errors are available and well-tested. 
 
3.3 Aerosol Observations 
 

The assimilated aerosol observations are AOD observations/retrievals obtained by combining the Moderate Resolution 30 
Imaging Spectroradiometer (MODIS) collection 6.1 (Sayer et al., 2014) with additional AOD observations over turbid 
coastal water regions developed by Wang et al. (2017). In particular we assimilate AOD at 0.55 μm wavelength with a 
resolution of 3-km. There are substantial data gaps during the daytime also, given the sampling of MODIS.  
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The AOD observation operator consists of two components: (i) interpolation from WRF-Chem grid points to AOD 
observation location, and (ii) transformation of the WRF-Chem environmental state (e.g., temperature, humidity, pressure, 

and GOCART aerosol species) to AOD. To compute total column integrated AOD within a model grid cell, we follow the 
equation given in Pagowski et al. (2014) 
 5 

𝜏(𝜆) = ∑ ∑ 𝐸YkW × 𝑐Cm × ρm × 𝑑m	,
mW[p
mq&

r
Cq&          (14) 

 

where c is aerosol mixing ratio, ρ is the dry air density, d is the layer depth, and 𝐸YkW is the extinction coefficient. The 

extinction coefficient is pre-computed using Mie theory and accounts for hygroscopic growth (e.g., Petters and Kreidenweis, 
2007). Index i refers to aerosol species, while index k denotes model layer. 10 

 
4 Experimental Design 
 
In this paper a dust storm event that occurred over the Arabian Peninsula on August 3-4, 2016 has been chosen. This storm is 
characterized by an interaction between two dust plumes that reside in two different air masses: one in a dry continental air 15 

mass over Saudi Arabian interior, and the other in a moist maritime air mass over the southeastern portion of the Arabian 
Peninsula. The development of the second plume produces a challenging air-sea interaction that has been addressed in other 
papers included in this special issue.  
 
4.1 Experiments  20 

 
Data assimilation experiments begin on August 3, 2016 at 0000 UTC and end on August 4, 2016 at 1800 UTC. The 
assimilation window is 6-hours, implying that there are 8 DA cycles. Atmospheric observations are available in every DA 
cycle, but AOD observations are available only during the daytime. This means that AOD observations were available only 

in DA cycles 2, 3, 6, and 7, which poses an additional challenge for data assimilation. Atmospheric observations are mostly 25 
surface measurements, with vertical information provided by some radiosonde observations. Since atmospheric and AOD 
observation operators are quasi-linear (only the vertical interpolation in the atmospheric observation operator is slightly 
nonlinear), the data assimilation performs only one minimization iteration.  
 

The main data assimilation experiments include: (1) Assimilation of AOD observations only, and (2) Simultaneous 30 
assimilation of atmospheric and AOD observations. The second experiment is exploiting in full the strongly coupled DA 
capability for improving aerosol initial conditions, while the first experiment is a referent run. By comparing the two 
experiments we can assess the value of atmospheric observations for improving aerosol initial conditions in a strongly 
coupled data assimilation system. We also include a single AOD observation experiment to assess the structure of a coupled 

forecast error covariance. 35 
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The choice of control variables includes atmospheric and aerosol model variables. The atmospheric control variables are: air 

temperature, horizontal winds, surface pressure, and specific humidity, while the aerosol control variables include GOCART 
dust species only.  
 5 
Observation errors used for AOD observations follow Pagowski (2014), distinguish between land and water, and make the 
error dependent on the value of observations. In particular, we use the following observation errors: 

 

𝜎𝐴𝑂𝐷 = v
0.1 + 0.15 ∙ 𝑦𝐴𝑂𝐷 (𝑜𝑣𝑒𝑟	𝑙𝑎𝑛𝑑)
0.1 + 0.05 ∙ 𝑦𝐴𝑂𝐷 (𝑜𝑣𝑒𝑟	𝑤𝑎𝑡𝑒𝑟)        (15) 

 10 
We also include AOD observation bias correction in data assimilation by adopting the moving-average approach (described 
by Kliewer et al. 2018). 

 
4.2 Verification  
 15 
Verification of data assimilation poses a challenge for the Arabian Peninsula domain, especially for aerosol. In general, it is 

preferred to use an independent data source for verification, i.e. data that are different from the assimilated data. Typical 
aerosol verifying observations include those from the Aerosol Robotic Network (AERONET) (https://aeronet.gsfc.nasa.gov) 
and CALIOP data (e.g., Toth et al. 2013) onboard the CALIPSO satellite. Unfortunately, only 1-2 AERONET sites were 
available during this period, and the CALIPSO satellite has an infrequent passage over the area of interest. Data assimilation 20 
is designed to minimize the cost function (1) over the whole analysis domain, consequently verifying its impact at only few 

points is not adequate. Therefore, we opt for other means of verification. We include estimates of Degrees of Freedom for 
Signal (DFS) to quantify the impact of data assimilation (e.g., Zupanski et al. 2007). In most general form, DFS refers to 
reduction of Shannon entropy due to data assimilation (e.g., Rodgers 2000). The MLEF algorithm produces DFS as a by-
product, and these are represented by  25 
 

𝐷𝐹𝑆 = ∑ 𝜆𝑖
&�𝜆𝑖C             (16) 

 

where 𝜆 are the eigenvalues of the matrix 𝑍 = R𝑹−1/2𝑯𝑷𝑓
1/2S

𝑇
R𝑹−1/2𝑯𝑷𝑓

1/2S. Since the matrix Z is real and positive-

semidefinite definite, the DFS values are non-negative: zero values indicate null impact of data assimilation, while positive 30 
values quantify the efficiency of data assimilation in using information from the assimilated observations. A theoretical 
maximum calculated assuming completely independent ensemble perturbations and sufficient number of observations is 
approximately equal to one half of the ensemble size. In our experiments with 32 ensembles this would be around 16. 
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However, ensemble perturbations are not fully independent and there are grid points with small number of neighbouring 
observations, therefore further reducing the achievable DFS maximum value. 

 
5 Results 
 5 
All results presented here are for the inner domain of the WRF-Chem model, at a horizontal resolution of 9 km. 
 

5.1 Observations  
 
As mentioned earlier AOD observations had both temporal and spatial gaps. In Fig. 1 we show the AOD observation 10 
coverage when they were available. One can notice generally satisfactory coverage over the Persian Gulf, with the exception 
of August 4, 2016 at 0600 UTC due to the sun glint, since no retrievals are conducted over water in the glint zone. 

 
In Table 1 we include the number of atmospheric and AOD observations that passed basic quality control. One can see that 
the number of atmospheric observations is largest at 0000 UTC, while the number of AOD observations varies. Most 15 
noticeable is a drop in the number of AOD observations on August 4, 2016 at 0600 UTC, due to lack of nighttime retrievals. 
Atmospheric observations, although small in number, are available at each analysis time. This underlines the need for a 

mechanism that can transfer the information from atmospheric observations to aerosol variables, which in this paper is 
addressed through the strongly coupled data assimilation framework.  
 20 
5.2 Assimilation of a Single AOD Observation 

 
Forecast error covariance has a fundamental role in any data assimilation methodology. In strongly coupled data assimilation 
its role is even more critical, as cross-component covariance provides a mechanism for improving the benefit of 
observations, as explained in section 2.2. Assessing its structure in a given application is a good indicator of the potential 25 
impact of strongly coupled data assimilation. This is typically achieved by conducting a data assimilation experiment with 

the assimilation of a single observation (e.g., Thepaut et al. 1996; Park et al. 2015). Therefore, we conduct an assimilation 
experiment in which a single AOD observation is assimilated. All specifications of the model and data assimilation remain 

as described in section 3.2. The single AOD observation is located at 27.5°	𝑁 and 50.5°	𝐸. We choose the DA cycle 7, valid 

on August 4, 2016 at 1200 UTC, so that the coupled forecast error covariance had time to develop its dynamical structure. In 30 

Fig.2 we show the analysis increments (𝒙; − 𝒙*) for the DUST-1 GOCART variable (effective radii of 0.5  𝜇𝑚). One can 
notice the well-defined and localized impact of the AOD observation on dust. Fig.2 closely describes the structure of the 

matrix 𝑃;YZ[,;YZ[ from section 2.2.  
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We are particularly interested in the cross-component covariance matrix 𝑃;WX,;YZ[. The structure of this matrix is shown in 

Fig.3, for temperature, specific humidity, and horizontal wind, all at model level 8. The plots once again show well-defined 
and localized structures, indicating that cross-component covariance has a favourable structure for improving the utility of 
AOD observations.  Temperature clearly shows a negative increment, while specific humidity shows a positive increment. A 
dipole structure can be seen in the wind increment, suggesting an increased convergence at observation location.  5 
 

An interpretation of the impact of a single AOD observation in data assimilation can be as follows: a higher value of an 
AOD observation implies an increase of dust throughout the lower troposphere, which has a cooling effect that is also 
facilitated by temperature advection away from the observation location. Reduction of temperature implies reduced 
atmospheric pressure and eventually higher specific humidity. Although other explanations may be possible, this 10 

interpretation suggests that data assimilation has a dynamic response to an observation, a consequence of ensemble-based 
coupled forecast error covariance. The above discussion also indicates that structure of the cross-component covariance is 
satisfactory and possibly beneficial for strongly coupled data assimilation.  
 
5.3 Assimilation of All Available Data 15 

 
5.3.1 Degrees of Freedom for Signal 
 
We now present the results of strongly coupled data assimilation that considers all available data. We first focus on the DFS 
measure to check the performance of coupled data assimilation in terms of entropy reduction. In order to facilitate the 20 

comparison with the reference run (i.e. assimilation of AOD observations only) we show DFS at DA cycles with AOD 
observations in Fig.4.  The granulated structure of DFS is a consequence of covariance localization, which implies that DFS 
is calculated only at coarser analysis points. Although DFS could be interpolated to fine resolution points resulting in a 
smoother DFS field, we are keeping a constant DFS value for all fine resolution points surrounding the actual analysis point 
so that the coarse resolution of analysis points can be seen. There are several things that can be noticed in Fig.4, such as that 25 

higher values of DFS coincide with the location of observations. This also implies that there is a reduced DFS value over the 
Persian Gulf on August 4 at 0600 UTC, caused by the earlier mentioned nocturnal gap in AOD observations. One can also 
notice a steady increase of DFS value over time. Considering a higher number of total observations on August 3 at 0600 
UTC and 1200 UTC, one would think that higher DFS should be obtained at those analysis times. However, Fig.4 shows a 

relatively larger DFS on August 4 at 0600 UTC and 1200 UTC. This essentially states that the data assimilation algorithm 30 
was able to extract more information from observations at later cycles. A possible interpretation of these results is that 
strongly coupled error covariance was more realistic at later DA cycles, making the impact of atmospheric, as well as AOD 
observations, more efficient.  
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Although the DFS results in strongly coupled assimilation of atmospheric and AOD observations are indicating an 
improvement due to assimilation, it is still not clear if atmospheric observations were helpful. The following is a central 

question of the strongly coupled data assimilation system: is the ensemble-based strongly coupled forecast error covariance 
sufficiently realistic in representing the cross-component correlations in our experiments? Results from our single AOD 
assimilation experiments suggested this is the case, but only the actual assimilation of all observations can confirm it. 5 
Therefore, we compare the DFS results from Fig.4 to DFS obtained in the assimilation of AOD observations only 

experiment by creating a difference  𝐷𝐹𝑆�,���:� − 𝐷𝐹𝑆�:�, shown in Fig.5. Positive values of this difference indicate 

positive impact of atmospheric observations, while negative values indicate a degradation of the analysis due to the impact 
of strongly coupled error covariance. One can see both the positive and negative values. However, the covered area and the 
magnitudes of positive values are clearly dominant, indicating that atmospheric observations had an overall positive impact 10 
in data assimilation. It is especially important to note the strong positive impact in the northern part of the Persian Gulf on 

August 4 at 0600 UTC. This is the analysis time when there was a gap in AOD observations, practically over the entire gulf 
(e.g., Fig.1). At this time the AOD only assimilation could not produce any impact in this area simply because there were no 
observations in the vicinity of that area. On the other hand, assimilation of combined atmospheric and AOD observations did 
produce a positive impact, implicitly suggesting that the strongly coupled ensemble-based forecast error covariance was able 15 
to transfer the information from atmospheric observations. 

 
Both experiments, with and without the assimilation of atmospheric observations, show non-zero values of DFS. Note that in 
an experiment without assimilation of any data DFS would be equal to zero. Therefore, positive values of DFS confirm that 
data assimilation had a positive impact in either experimental configuration.  20 
 

5.3.2 Aerosol Analysis Increments 
 
After showing the positive impact of strongly coupled data assimilation in terms of DFS, it is important to understand where 
the dominant changes occurred, especially in the vertical. Note that even a stand-alone aerosol data assimilation produces a 25 

three-dimensional adjustment of aerosols. As shown in Fig.6, the reference experiment with assimilation of only AOD 
observations produces DUST-1 analysis adjustments throughout the lower troposphere. In the analysis field one can notice a 
mid-tropospheric layer with lofted dust up to 600 hPa, reaching the maximum at about 800 hPa. The cross-section of DUST-
1 analysis increment (analysis-minus-guess) shows also a vertical structure with noticeable adjustments up to 500 hPa. This 
illustrates the ability of data assimilation to adjust vertical aerosol fields even though the assimilated observations only have 30 

a horizontal structure.  Without any other influences, this vertical adjustment in data assimilation happens in agreement with 
the vertical distribution of aerosol uncertainty in the forecast guess.  
 
Since our special interest is in the impact of atmospheric observations on aerosol initial conditions in strongly coupled 
atmosphere-aerosol data assimilation, we are interested in knowing whether or not atmospheric observations can impact the 35 
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adjustment of aerosols, especially in the vertical. Therefore, in Fig.7 we show a difference between DUST-1 analysis in the 
DA experiment that includes the assimilation of atmospheric and AOD observations and the experiment with assimilation of 

AOD observations only. The difference represents an accumulated impact of atmospheric observations. One can see that 
there is a noticeable impact of atmospheric observations on the aerosol vertical distribution, with maximum adjustments 

reaching approximately ±20 µg/kg-dryair. From the horizontal map in Fig.7 there is a well-defined positive impact over the 5 

Persian Gulf, with positive DUST-1 increments outlining the strengthening of the dust plume due to assimilation of 
atmospheric observations. The vertical cross-section in Fig.7 suggests that atmospheric observations had the most 
pronounced impact in the 900-600 hPa layer, mostly strengthening the dust lofting. 
 

 10 
5.3.3 Aerosol Uncertainty 
 
By its construct data assimilation will produce a reduction of uncertainty in any given DA cycle. However, unrealistic 
uncertainty reduction would prevent development of a reliable forecast error covariance in continuous data assimilation 

cycles. The single observation experiments and the DFS results suggest that covariance improvement was realistic, possibly 15 
implying that uncertainty reduction was also realistic. In Fig.8 we show the uncertainty of DUST-1 in terms of the standard 
deviation of the forecast error from the reference experiment, with assimilation of AOD observations only, and from the 
strongly coupled DA experiment, with the assimilation of atmospheric and AOD observations. One can see that strongly 
coupled DA experiment results in additionally reduced aerosol uncertainty compared to the referent DA experiment. 

Although uncertainty reduction is generally seen throughout the domain, lower values over the north-western part of the 20 
Persian Gulf, where the storm was located at 1200 UTC on August 4, 2016, are especially relevant. There is about 25% 
reduction of dust uncertainty in this region due to the assimilation of atmospheric observations. Overall, Fig.8 suggests that 
atmospheric observations had a positive impact in reducing the uncertainty of dust estimates.  

 
 25 
6 Summary and Conclusions 
 
In this paper we presented preliminary results of strongly coupled atmosphere-aerosol data assimilation with the WRF-Chem 
modelling system that includes the GOCART aerosol module, in a dust storm application over the Arabian Peninsula. The 

assimilated observations include conventional atmospheric observations and AOD retrievals.  30 
 
Of special interest in this study was the use of strongly coupled data assimilation system capable of having atmospheric 
observations impacting the aerosol. Preliminary investigation of strongly coupled error covariance in this system was found 

to be satisfactory, with generally well-defined cross-component structure. The performance of this system in terms of DFS 
indicative of the positive impact of data assimilation in all experiments. Another main goal of this study was to assess the 35 
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impact of atmospheric observations on aerosol initial conditions in a strongly coupled data assimilation system.  It was found 
that the impact of atmospheric observations on aerosols is generally positive. In terms of DFS there is an improved 

efficiency of data processing, resulting in a higher DFS values when atmospheric data are assimilated. In terms of the three-
dimensional structure of the aerosol field, it was found that atmospheric observations have additional impact on the vertical 
distribution of the dust analysis adjustment. A reduction of dust uncertainty could also be seen when atmospheric 5 
observations are assimilated.  
 

The use of a strongly coupled data assimilation system requires additional assessment and possible improvement.  For 
example, strongly coupled error covariance is currently controlled only by covariance localization only. This can be likely 
improved if the cross-component correlations between relevant variables is kept, while reducing or setting to zero the weak 10 
correlations between other variables. We plan to investigate in detail this possibility in the near future.  
 

We are also interested in applying the methodology presented here to coastal areas at higher resolutions of 1-3 km. 
Assimilation of additional aerosol observations is also planned, with night time AOD data and other datasets that provide a 
vertical distribution of aerosols.   15 
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Table 1: Number of observations available for data assimilation.  10 
 

Date Number of Atmospheric Observations Number of AOD Observations 

August 3, 2016 at 0000 UTC 704 - 

August 3, 2016 at 0600 UTC 286 3149 

August 3, 2016 at 1200 UTC 438 3297 

August 3, 2016 at 1800 UTC 240 - 

August 4, 2016 at 0000 UTC 896 - 

August 4, 2016 at 0600 UTC 261 797 

August 4, 2016 at 1200 UTC 382 1248 

August 4, 2016 at 1800 UTC 224 - 
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Figure 1: AOD observation coverage during data assimilation. Observations are available only at daylight, at 0600 UTC and 1200 
UTC. DA cycles at night time correspond to 1800 UTC and 0000 UTC, when AOD observations were not available.  30 
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Figure 2: Analysis increments of DUST-1 GOCART variable (µg/kg-dry air) in single AOD observation experiment valid August 
4, 2016 at 1200 UTC: horizontal map at model level 5, near surface (left panel), and vertical cross-section at 𝟐𝟕. 𝟓°	𝑵 (right panel).    

 
 30 

 
 
 
 

 35 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-2
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 15 January 2019
c© Author(s) 2019. CC BY 4.0 License.



20 
 

 
 

 
 
 5 
 
 

 
 
 10 
 
 

 
 
 15 
 

 
 
 

 20 

 

 

 

 

 25 

 

 

Figure 3: Analysis increments at model level 8 in single AOD observation experiment valid August 4, 2016 at 1200 UTC: 
temperature (K) (upper left panel), specific humidity (kg/kg) (upper right panel), and horizontal wind (m/s) (bottom panel).   
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Figure 4: DFS in strongly coupled data assimilation of atmospheric and AOD observations at model level 5. 
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Figure 5: DFS difference between the experiment with assimilation of all (e.g., atmospheric and AOD) observations and with 
assimilation of AOD observations only.  
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Figure 6: Vertical cross-section of DUST-1 (µg/kg-dryair) at 𝟐𝟕. 𝟓°	𝑵  in the experiment with assimilation of AOD observations 
only: analysis (left panel), and analysis increment (analysis-minus-guess) (right panel), valid 1200 UTC on August 4, 2016. 
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Figure 7: DUST-1 difference (µg/kg-dryair) between the experiments with assimilation of atmospheric and AOD observations, and 25 
assimilation of AOD observations only, valid 1200 UTC on August 4, 2016: horizontal difference at Lev=5 (left panel) and 
difference in vertical at 𝟐𝟕. 𝟓°	𝑵 (right panel). 
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Figure 8: Forecast error standard deviation of DUST-1 (µg/kg-dryair) at Lev=5, valid 1200 UTC on August 4, 2016: assimilation of 
AOD observations only (left panel) and assimilation of atmospheric and AOD observations (right panel). 25 
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