Articles | Volume 9, issue 3
Atmos. Chem. Phys., 9, 909–925, 2009
https://doi.org/10.5194/acp-9-909-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: European Integrated Project on Aerosol-Cloud-Climate and Air...
05 Feb 2009
05 Feb 2009
Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands
M. Schaap et al.
Viewed
Total article views: 5,879 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Oct 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,642 | 3,933 | 304 | 5,879 | 90 | 68 |
- HTML: 1,642
- PDF: 3,933
- XML: 304
- Total: 5,879
- BibTeX: 90
- EndNote: 68
Total article views: 5,248 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 05 Feb 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,356 | 3,599 | 293 | 5,248 | 79 | 65 |
- HTML: 1,356
- PDF: 3,599
- XML: 293
- Total: 5,248
- BibTeX: 79
- EndNote: 65
Total article views: 631 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Oct 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
286 | 334 | 11 | 631 | 11 | 3 |
- HTML: 286
- PDF: 334
- XML: 11
- Total: 631
- BibTeX: 11
- EndNote: 3
Cited
162 citations as recorded by crossref.
- Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? R. Hoff & S. Christopher 10.3155/1047-3289.59.6.645
- An urban solar flux island: Measurements from London C. Ryder & R. Toumi 10.1016/j.atmosenv.2011.03.045
- Machine learning in geosciences and remote sensing D. Lary et al. 10.1016/j.gsf.2015.07.003
- Recent changes of trans-boundary air pollution over the Yellow Sea: Implications for future air quality in South Korea P. Bhardwaj et al. 10.1016/j.envpol.2019.01.048
- Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland D. Wang et al. 10.5194/acp-19-13097-2019
- Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application A. van Donkelaar et al. 10.1289/ehp.0901623
- The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta P. Shao et al. 10.1016/j.apr.2016.09.001
- Estimation of surface-level PM 2.5 concentration using aerosol optical thickness through aerosol type analysis method Q. Chen et al. 10.1016/j.atmosenv.2017.03.050
- WITHDRAWN: Prevention and control of motor vehicle exhaust pollution based on internet of things system and cloud computing Y. Zhang et al. 10.1016/j.micpro.2020.103373
- Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms M. Collaud Coen et al. 10.5194/amt-3-457-2010
- Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5 Y. Xu et al. 10.1016/j.envpol.2018.08.029
- Aerosol effects on the UV irradiance in Santiago de Chile R. Cordero et al. 10.1016/j.atmosres.2014.07.002
- A Modified Aerosol Free Vegetation Index Algorithm for Aerosol Optical Depth Retrieval Using GOSAT TANSO-CAI Data G. Zhong et al. 10.3390/rs8120998
- Assessment of satellite-based aerosol optical depth using continuous lidar observation C. Lin et al. 10.1016/j.atmosenv.2016.06.012
- Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region J. Chen et al. 10.1016/j.atmosres.2014.02.011
- Regional characteristics of the relationship between columnar AOD and surface PM 2.5 : Application of lidar aerosol extinction profiles over Baltimore–Washington Corridor during DISCOVER-AQ D. Chu et al. 10.1016/j.atmosenv.2014.11.034
- Spatial distribution of aerosol optical depth over India during COVID-19 lockdown phase-1 S. Rani & R. Kumar 10.1007/s41324-022-00442-9
- Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign J. Huang et al. 10.1029/2010JD014910
- Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia N. Kamarul Zaman et al. 10.1016/j.atmosres.2017.04.019
- A novel calibration approach of MODIS AOD data to predict PM<sub>2.5</sub> concentrations H. Lee et al. 10.5194/acp-11-7991-2011
- Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model C. Brokamp et al. 10.1021/acs.est.7b05381
- Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China L. Li et al. 10.3390/rs70607914
- The observation-based relationships between PM2.5and AOD over China J. Xin et al. 10.1002/2015JD024655
- Modeling inorganic nitrogen deposition in Guangdong province, China Z. Huang et al. 10.1016/j.atmosenv.2015.03.014
- Correlation between PM concentrations and aerosol optical depth in eastern China J. Guo et al. 10.1016/j.atmosenv.2009.08.026
- Cloud detection and classification based on MAX-DOAS observations T. Wagner et al. 10.5194/amt-7-1289-2014
- Joint features random forest (JFRF) model for mapping hourly surface PM2.5 over China L. Dong et al. 10.1016/j.atmosenv.2022.118969
- The impact of weather and atmospheric circulation on O<sub>3</sub> and PM<sub>10</sub> levels at a rural mid-latitude site M. Demuzere et al. 10.5194/acp-9-2695-2009
- Estimation of aerosol water and chemical composition from AERONET Sun–sky radiometer measurements at Cabauw, the Netherlands A. van Beelen et al. 10.5194/acp-14-5969-2014
- Holistics 3.0 for Health D. Lary et al. 10.3390/ijgi3031023
- Spatio-temporal analysis of MODIS AOD over western part of Iran S. Namdari et al. 10.1007/s12517-015-2029-7
- Satellite Remote Sensing for Estimating PM2.5 and Its Components Y. Li et al. 10.1007/s40726-020-00170-4
- Short period PM2.5 prediction based on multivariate linear regression model R. Zhao et al. 10.1371/journal.pone.0201011
- Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives Y. Zhang et al. 10.1016/j.fmre.2021.04.007
- Satellite remote sensing of fine particulate air pollutants over Indian mega cities V. Sreekanth et al. 10.1016/j.asr.2017.08.008
- Application of MODIS Products for Air Quality Studies Over Southeastern Italy A. Dinoi et al. 10.3390/rs2071767
- Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran S. Sotoudeheian & M. Arhami 10.1186/s40201-014-0122-6
- Analysis of long-range transport of aerosols for Portugal using 3D chemical transport model and satellite measurements O. Tchepel et al. 10.1016/j.atmosenv.2012.09.061
- Spatial and Temporal Variations of Satellite-Derived Multi-Year Particulate Data of Saudi Arabia: An Exploratory Analysis Y. Aina et al. 10.3390/ijerph111111152
- A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges A. Ranjan et al. 10.1007/s13143-020-00215-0
- Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model S. Ghotbi et al. 10.1016/j.atmosenv.2016.06.057
- Annual cycle in co-located in situ, total-column, and height-resolved aerosol observations in the Po Valley (Italy): Implications for ground-level particulate matter mass concentration estimation from remote sensing F. Barnaba et al. 10.1029/2009JD013002
- Constraining chemical transport PM<sub>2.5</sub> modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley M. Friberg et al. 10.5194/acp-18-12891-2018
- Use of spaceborne lidar for the evaluation of thin cirrus contamination and screening in the Aqua MODIS Collection 5 aerosol products J. Huang et al. 10.1002/jgrd.50504
- Remote sensing of ground-level PM2.5 combining AOD and backscattering profile S. Li et al. 10.1016/j.rse.2016.05.025
- Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS J. Handschuh et al. 10.1016/j.rsase.2022.100716
- Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system E. Barbaro et al. 10.1002/2013JD021237
- Estimation of PM<sub>10</sub> concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign S. Seo et al. 10.5194/acp-15-319-2015
- Spatial analysis of aerosol optical depth obtained by air quality modelling and SEVIRI satellite observations over Portugal A. Fernandes et al. 10.1016/j.apr.2018.07.011
- Estimation of Ultrahigh Resolution PM2.5 Mass Concentrations Based on Mie Scattering Theory by Using Landsat8 OLI Images over Pearl River Delta Y. Tang et al. 10.3390/rs13132463
- Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study T. Nguyen et al. 10.1088/1748-9326/10/9/095016
- Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011 K. Wang et al. 10.5194/acp-12-9387-2012
- Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015 C. Jung et al. 10.1016/j.envpol.2017.11.016
- Factors controlling the long-term (2009–2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya, India C. Sarkar et al. 10.1016/j.scitotenv.2018.11.367
- Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach X. Hu et al. 10.1021/acs.est.7b01210
- Factors that influence surface PM<sub>2.5</sub> values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ S. Crumeyrolle et al. 10.5194/acp-14-2139-2014
- Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub-urban area M. Khoshsima et al. 10.1016/j.jaerosci.2013.10.008
- Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO<sub>2</sub> radicals H. Liang et al. 10.5194/acp-13-11259-2013
- Air Quality Assessment over Sudan using NASA Remote Sensing Satellites Data and MERRA-2 Model I. Muntasir et al. 10.30799/jespr.207.20060302
- Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems J. Huang et al. 10.1029/2012JD017757
- Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment V. Estellés et al. 10.1029/2011JD016356
- Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD Y. Xie et al. 10.1021/acs.est.5b01413
- Testing and improving OMI DOMINO tropospheric NO2using observations from the DANDELIONS and INTEX-B validation campaigns J. Hains et al. 10.1029/2009JD012399
- Estimating Spatio-Temporal Variations of PM2.5 Concentrations Using VIIRS-Derived AOD in the Guanzhong Basin, China K. Zhang et al. 10.3390/rs11222679
- Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East S. Namdari et al. 10.1016/j.atmosenv.2017.11.016
- Advancing Exposure Assessment of PM2.5 Using Satellite Remote Sensing: A Review H. Lee 10.5572/ajae.2020.14.4.319
- Evaluation of Machine Learning Models for Estimating PM2.5 Concentrations across Malaysia N. Zaman et al. 10.3390/app11167326
- Spatiotemporal Distributions of PM2.5 Concentrations in the Beijing–Tianjin–Hebei Region From 2013 to 2020 X. Yang et al. 10.3389/fenvs.2022.842237
- Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran M. Foroushani et al. 10.1007/s40333-020-0079-5
- Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks W. Zhang et al. 10.1007/s12524-021-01344-3
- Estimating ground-level PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer Z. Zang et al. 10.1016/j.scitotenv.2016.09.186
- Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia S. Pani et al. 10.1016/j.scitotenv.2018.03.204
- A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique R. Park et al. 10.5194/acp-11-12275-2011
- Long term analysis of the columnar and surface aerosol relationship at an urban European coastal site S. Segura et al. 10.1016/j.atmosenv.2017.08.012
- Impact of urban pollution emitted in Warsaw on aerosol properties O. Zawadzka et al. 10.1016/j.atmosenv.2012.11.065
- Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent K. Markowicz & M. Chiliński 10.3390/s20092617
- Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods Z. Zang et al. 10.3390/atmos8060104
- Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States V. Buchard et al. 10.1016/j.atmosenv.2015.11.004
- Determination of tropospheric vertical columns of NO<sub>2</sub> and aerosol optical properties in a rural setting using MAX-DOAS J. Halla et al. 10.5194/acp-11-12475-2011
- Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter S. Li et al. 10.5194/amt-10-2093-2017
- Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model Y. Guo et al. 10.1016/j.rse.2017.06.001
- Effects of soiling on photovoltaic (PV) modules in the Atacama Desert R. Cordero et al. 10.1038/s41598-018-32291-8
- The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future L. Remer et al. 10.3390/rs12182900
- Estimating PM2.5 over southern Sweden using space-borne optical measurements P. Glantz et al. 10.1016/j.atmosenv.2009.05.017
- Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah D. Mallia et al. 10.1002/2014JD022472
- Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies D. Lary et al. 10.4137/EHI.S15664
- A key study on spatial source distribution of PM2.5 based on the airflow trajectory model C. Wang et al. 10.1080/01431161.2016.1251628
- Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors Y. Aliyu & J. Botai 10.1016/j.atmosenv.2018.02.034
- Simplicity versus accuracy for estimation of the PM2.5 concentration: a comparison between LUR and GWR methods across time scales B. Zou et al. 10.1080/14498596.2019.1624203
- Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? X. Ma et al. 10.1016/j.atmosres.2016.06.018
- The relation between columnar and surface aerosol optical properties in a background environment D. Szczepanik & K. Markowicz 10.1016/j.apr.2017.10.001
- Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data P. Lalitaporn & T. Mekaumnuaychai 10.1007/s10661-020-08346-7
- Essential variables for air quality estimation A. Shelestov et al. 10.1080/17538947.2019.1620881
- A robust calibration approach for PM<sub>10</sub> prediction from MODIS aerosol optical depth X. Yap & M. Hashim 10.5194/acp-13-3517-2013
- Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States Q. Di et al. 10.1021/acs.est.5b06121
- A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide J. Chen et al. 10.1016/j.envint.2019.104934
- Estimation of Surface Concentrations of Black Carbon from Long-Term Measurements at Aeronet Sites over Korea Y. Choi et al. 10.3390/rs12233904
- NO2lidar profile measurements for satellite interpretation and validation H. Volten et al. 10.1029/2009JD012441
- Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES) A. Chudnovsky et al. 10.1080/10962247.2012.695321
- Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression X. Hu et al. 10.1016/j.envres.2012.11.003
- Spatial Variation of the Relationship between PM2.5Concentrations and Meteorological Parameters in China G. Lin et al. 10.1155/2015/684618
- Exploratory study for estimating atmospheric low level particle pollution based on vertical integrated optical measurements H. Yahi et al. 10.1016/j.atmosenv.2010.11.047
- A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions A. Chudnovsky et al. 10.5194/acp-13-10907-2013
- PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region E. Emili et al. 10.1016/j.rse.2010.05.024
- Use of earth observation data for applications in public health Q. Weng et al. 10.1080/10106049.2013.838311
- Remote sensing of surface visibility from space: A look at the United States East Coast A. Kessner et al. 10.1016/j.atmosenv.2013.08.050
- Understanding an urbanizing planet: Strategic directions for remote sensing Z. Zhu et al. 10.1016/j.rse.2019.04.020
- Satellite AOD conversion into ground PM10, PM2.5 and PM1 over the Po valley (Milan, Italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology L. Ferrero et al. 10.1016/j.apr.2019.08.003
- Analysis of some factors related to dust storms occurrence in the Sistan region S. Namdari et al. 10.1007/s11356-021-13922-6
- A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval W. You et al. 10.1016/j.atmosres.2015.09.008
- Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity K. Kim et al. 10.1016/j.chemosphere.2015.09.040
- Satellite‐based top‐down Lagrangian approach to quantify aerosol emissions over California S. Nizar & B. Dodamani 10.1002/qj.3756
- Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth S. Lysenko & M. Kugeiko 10.1007/s10812-011-9526-6
- Predicting annual PM2.5 in mainland China from 2014 to 2020 using multi temporal satellite product: An improved deep learning approach with spatial generalization ability Z. Wang et al. 10.1016/j.isprsjprs.2022.03.002
- Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing–Tianjin–Hebei, China X. Wang & W. Sun 10.1016/j.atmosenv.2019.05.004
- Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia B. Chen et al. 10.1007/s11869-012-0192-5
- Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model M. Gupta & M. Mohan 10.3390/atmos12111417
- Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data Y. Song et al. 10.1371/journal.pone.0142149
- Superior PM2.5 Estimation by Integrating Aerosol Fine Mode Data from the Himawari-8 Satellite in Deep and Classical Machine Learning Models Z. Zang et al. 10.3390/rs13142779
- Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area L. Ferrero et al. 10.5194/acp-10-3915-2010
- Impact of Fine-Mode Fraction on the Relationship Between MODIS AOD and Ground-Based Particulate Matter G. Wei et al. 10.1007/s12524-021-01461-z
- Long-term trends in air quality in major cities in the UK and India: a view from space K. Vohra et al. 10.5194/acp-21-6275-2021
- Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS H. Chang et al. 10.1007/s10661-019-7421-4
- How well do satellite AOD observations represent the spatial and temporal variability of PM 2.5 concentration for the United States? J. Li et al. 10.1016/j.atmosenv.2014.12.010
- Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States H. Lee et al. 10.1021/acs.est.6b01438
- Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign G. Roelofs et al. 10.5194/acp-10-7709-2010
- New approach to monitor transboundary particulate pollution over Northeast Asia M. Park et al. 10.5194/acp-14-659-2014
- Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging N. Bègue et al. 10.1029/2012JD017611
- Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD W. You et al. 10.1007/s11356-015-6027-9
- Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count W. You et al. 10.1016/j.rse.2015.07.020
- Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations N. Benas et al. 10.1016/j.atmosenv.2013.07.012
- The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011 J. Xin et al. 10.1016/j.atmosres.2013.11.001
- Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: case study of Tehran, Iran S. Sotoudeheian & M. Arhami 10.1007/s40201-020-00509-5
- Physical and optical properties of atmospheric aerosols by in-situ and radiometric measurements M. Calvello et al. 10.5194/acp-10-2195-2010
- Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth L. Li et al. 10.1016/j.rse.2018.09.001
- PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India P. Gogikar et al. 10.1007/s12652-020-02457-2
- A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth Y. Chu et al. 10.3390/atmos7100129
- Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China X. Yan et al. 10.1016/j.atmosenv.2017.09.023
- Prediction of hourly ground-level PM 2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China X. Mao et al. 10.1016/j.apr.2017.04.002
- Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 C. Lin et al. 10.1016/j.rse.2014.09.015
- Improving the Accuracy of Daily Satellite-Derived Ground-Level Fine Aerosol Concentration Estimates for North America A. van Donkelaar et al. 10.1021/es3025319
- Air quality in the Galapagos Islands: A baseline view from remote sensing andin situmeasurements M. Cazorla & E. Herrera 10.1002/met.1878
- Differences in fine particle chemical composition on clear and cloudy days A. Christiansen et al. 10.5194/acp-20-11607-2020
- Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data A. Beloconi et al. 10.1016/j.rse.2015.10.017
- Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations H. Lee et al. 10.1016/j.envres.2012.06.011
- Monitoring and Forecasting Air Pollution Levels by Exploiting Satellite, Ground-Based, and Synoptic Data, Elaborated with Regression Models S. Michaelides et al. 10.1155/2017/2954010
- Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the Metropolitan Area of São Paulo A. Damascena et al. 10.1016/j.atmosenv.2020.117949
- A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China W. Song et al. 10.1016/j.rse.2014.08.008
- Assessment of African desert dust episodes over the southwest Spain at sea level using in situ aerosol optical and microphysical properties M. Sorribas et al. 10.3402/tellusb.v67.27482
- Temporal and spatial trends in aerosols near the English Channel – An air quality success story? M. Yang et al. 10.1016/j.aeaoa.2020.100074
- Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models W. You et al. 10.1016/j.scitotenv.2014.11.024
- Simulation of urban and regional air pollution in Bangladesh M. Muntaseer Billah Ibn Azkar et al. 10.1029/2011JD016509
- First TROPOMI Retrieval of Aerosol Effective Height Using O₄ Absorption Band at 477 nm and Aerosol Classification W. Choi et al. 10.1109/TGRS.2020.3044050
- Assessment of the clear-sky bias issue using continuous PM 10 data from two AERONET sites in Korea Y. Choi & Y. Ghim 10.1016/j.jes.2016.02.020
- Impact assessment of meteorological and environmental parameters on PM2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran) F. Hajiloo et al. 10.1007/s11356-018-1277-y
- Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation Y. Zhang & Z. Li 10.1016/j.rse.2015.02.005
- Overview and Applications of the New York State Mesonet Profiler Network B. Shrestha et al. 10.1175/JAMC-D-21-0104.1
- Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data Y. Charabi & A. Gastli 10.1016/j.renene.2011.12.005
- Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017 R. Xue et al. 10.1016/j.jclepro.2020.120563
- Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010 A. van Donkelaar et al. 10.1016/j.atmosenv.2011.07.068
- Optimal temporal scale for the correlation of AOD and ground measurements of PM2.5 in a real-time air quality estimation system H. Li et al. 10.1016/j.atmosenv.2009.06.004
- Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh A. Gupta et al. 10.1007/s42452-020-03829-1
159 citations as recorded by crossref.
- Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? R. Hoff & S. Christopher 10.3155/1047-3289.59.6.645
- An urban solar flux island: Measurements from London C. Ryder & R. Toumi 10.1016/j.atmosenv.2011.03.045
- Machine learning in geosciences and remote sensing D. Lary et al. 10.1016/j.gsf.2015.07.003
- Recent changes of trans-boundary air pollution over the Yellow Sea: Implications for future air quality in South Korea P. Bhardwaj et al. 10.1016/j.envpol.2019.01.048
- Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland D. Wang et al. 10.5194/acp-19-13097-2019
- Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application A. van Donkelaar et al. 10.1289/ehp.0901623
- The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta P. Shao et al. 10.1016/j.apr.2016.09.001
- Estimation of surface-level PM 2.5 concentration using aerosol optical thickness through aerosol type analysis method Q. Chen et al. 10.1016/j.atmosenv.2017.03.050
- WITHDRAWN: Prevention and control of motor vehicle exhaust pollution based on internet of things system and cloud computing Y. Zhang et al. 10.1016/j.micpro.2020.103373
- Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms M. Collaud Coen et al. 10.5194/amt-3-457-2010
- Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5 Y. Xu et al. 10.1016/j.envpol.2018.08.029
- Aerosol effects on the UV irradiance in Santiago de Chile R. Cordero et al. 10.1016/j.atmosres.2014.07.002
- A Modified Aerosol Free Vegetation Index Algorithm for Aerosol Optical Depth Retrieval Using GOSAT TANSO-CAI Data G. Zhong et al. 10.3390/rs8120998
- Assessment of satellite-based aerosol optical depth using continuous lidar observation C. Lin et al. 10.1016/j.atmosenv.2016.06.012
- Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region J. Chen et al. 10.1016/j.atmosres.2014.02.011
- Regional characteristics of the relationship between columnar AOD and surface PM 2.5 : Application of lidar aerosol extinction profiles over Baltimore–Washington Corridor during DISCOVER-AQ D. Chu et al. 10.1016/j.atmosenv.2014.11.034
- Spatial distribution of aerosol optical depth over India during COVID-19 lockdown phase-1 S. Rani & R. Kumar 10.1007/s41324-022-00442-9
- Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign J. Huang et al. 10.1029/2010JD014910
- Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia N. Kamarul Zaman et al. 10.1016/j.atmosres.2017.04.019
- A novel calibration approach of MODIS AOD data to predict PM<sub>2.5</sub> concentrations H. Lee et al. 10.5194/acp-11-7991-2011
- Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model C. Brokamp et al. 10.1021/acs.est.7b05381
- Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China L. Li et al. 10.3390/rs70607914
- The observation-based relationships between PM2.5and AOD over China J. Xin et al. 10.1002/2015JD024655
- Modeling inorganic nitrogen deposition in Guangdong province, China Z. Huang et al. 10.1016/j.atmosenv.2015.03.014
- Correlation between PM concentrations and aerosol optical depth in eastern China J. Guo et al. 10.1016/j.atmosenv.2009.08.026
- Cloud detection and classification based on MAX-DOAS observations T. Wagner et al. 10.5194/amt-7-1289-2014
- Joint features random forest (JFRF) model for mapping hourly surface PM2.5 over China L. Dong et al. 10.1016/j.atmosenv.2022.118969
- The impact of weather and atmospheric circulation on O<sub>3</sub> and PM<sub>10</sub> levels at a rural mid-latitude site M. Demuzere et al. 10.5194/acp-9-2695-2009
- Estimation of aerosol water and chemical composition from AERONET Sun–sky radiometer measurements at Cabauw, the Netherlands A. van Beelen et al. 10.5194/acp-14-5969-2014
- Holistics 3.0 for Health D. Lary et al. 10.3390/ijgi3031023
- Spatio-temporal analysis of MODIS AOD over western part of Iran S. Namdari et al. 10.1007/s12517-015-2029-7
- Satellite Remote Sensing for Estimating PM2.5 and Its Components Y. Li et al. 10.1007/s40726-020-00170-4
- Short period PM2.5 prediction based on multivariate linear regression model R. Zhao et al. 10.1371/journal.pone.0201011
- Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives Y. Zhang et al. 10.1016/j.fmre.2021.04.007
- Satellite remote sensing of fine particulate air pollutants over Indian mega cities V. Sreekanth et al. 10.1016/j.asr.2017.08.008
- Application of MODIS Products for Air Quality Studies Over Southeastern Italy A. Dinoi et al. 10.3390/rs2071767
- Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran S. Sotoudeheian & M. Arhami 10.1186/s40201-014-0122-6
- Analysis of long-range transport of aerosols for Portugal using 3D chemical transport model and satellite measurements O. Tchepel et al. 10.1016/j.atmosenv.2012.09.061
- Spatial and Temporal Variations of Satellite-Derived Multi-Year Particulate Data of Saudi Arabia: An Exploratory Analysis Y. Aina et al. 10.3390/ijerph111111152
- A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges A. Ranjan et al. 10.1007/s13143-020-00215-0
- Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model S. Ghotbi et al. 10.1016/j.atmosenv.2016.06.057
- Annual cycle in co-located in situ, total-column, and height-resolved aerosol observations in the Po Valley (Italy): Implications for ground-level particulate matter mass concentration estimation from remote sensing F. Barnaba et al. 10.1029/2009JD013002
- Constraining chemical transport PM<sub>2.5</sub> modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley M. Friberg et al. 10.5194/acp-18-12891-2018
- Use of spaceborne lidar for the evaluation of thin cirrus contamination and screening in the Aqua MODIS Collection 5 aerosol products J. Huang et al. 10.1002/jgrd.50504
- Remote sensing of ground-level PM2.5 combining AOD and backscattering profile S. Li et al. 10.1016/j.rse.2016.05.025
- Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS J. Handschuh et al. 10.1016/j.rsase.2022.100716
- Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system E. Barbaro et al. 10.1002/2013JD021237
- Estimation of PM<sub>10</sub> concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign S. Seo et al. 10.5194/acp-15-319-2015
- Spatial analysis of aerosol optical depth obtained by air quality modelling and SEVIRI satellite observations over Portugal A. Fernandes et al. 10.1016/j.apr.2018.07.011
- Estimation of Ultrahigh Resolution PM2.5 Mass Concentrations Based on Mie Scattering Theory by Using Landsat8 OLI Images over Pearl River Delta Y. Tang et al. 10.3390/rs13132463
- Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study T. Nguyen et al. 10.1088/1748-9326/10/9/095016
- Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011 K. Wang et al. 10.5194/acp-12-9387-2012
- Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015 C. Jung et al. 10.1016/j.envpol.2017.11.016
- Factors controlling the long-term (2009–2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya, India C. Sarkar et al. 10.1016/j.scitotenv.2018.11.367
- Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach X. Hu et al. 10.1021/acs.est.7b01210
- Factors that influence surface PM<sub>2.5</sub> values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ S. Crumeyrolle et al. 10.5194/acp-14-2139-2014
- Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub-urban area M. Khoshsima et al. 10.1016/j.jaerosci.2013.10.008
- Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO<sub>2</sub> radicals H. Liang et al. 10.5194/acp-13-11259-2013
- Air Quality Assessment over Sudan using NASA Remote Sensing Satellites Data and MERRA-2 Model I. Muntasir et al. 10.30799/jespr.207.20060302
- Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems J. Huang et al. 10.1029/2012JD017757
- Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment V. Estellés et al. 10.1029/2011JD016356
- Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD Y. Xie et al. 10.1021/acs.est.5b01413
- Testing and improving OMI DOMINO tropospheric NO2using observations from the DANDELIONS and INTEX-B validation campaigns J. Hains et al. 10.1029/2009JD012399
- Estimating Spatio-Temporal Variations of PM2.5 Concentrations Using VIIRS-Derived AOD in the Guanzhong Basin, China K. Zhang et al. 10.3390/rs11222679
- Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East S. Namdari et al. 10.1016/j.atmosenv.2017.11.016
- Advancing Exposure Assessment of PM2.5 Using Satellite Remote Sensing: A Review H. Lee 10.5572/ajae.2020.14.4.319
- Evaluation of Machine Learning Models for Estimating PM2.5 Concentrations across Malaysia N. Zaman et al. 10.3390/app11167326
- Spatiotemporal Distributions of PM2.5 Concentrations in the Beijing–Tianjin–Hebei Region From 2013 to 2020 X. Yang et al. 10.3389/fenvs.2022.842237
- Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran M. Foroushani et al. 10.1007/s40333-020-0079-5
- Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks W. Zhang et al. 10.1007/s12524-021-01344-3
- Estimating ground-level PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer Z. Zang et al. 10.1016/j.scitotenv.2016.09.186
- Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia S. Pani et al. 10.1016/j.scitotenv.2018.03.204
- A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique R. Park et al. 10.5194/acp-11-12275-2011
- Long term analysis of the columnar and surface aerosol relationship at an urban European coastal site S. Segura et al. 10.1016/j.atmosenv.2017.08.012
- Impact of urban pollution emitted in Warsaw on aerosol properties O. Zawadzka et al. 10.1016/j.atmosenv.2012.11.065
- Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent K. Markowicz & M. Chiliński 10.3390/s20092617
- Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods Z. Zang et al. 10.3390/atmos8060104
- Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States V. Buchard et al. 10.1016/j.atmosenv.2015.11.004
- Determination of tropospheric vertical columns of NO<sub>2</sub> and aerosol optical properties in a rural setting using MAX-DOAS J. Halla et al. 10.5194/acp-11-12475-2011
- Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter S. Li et al. 10.5194/amt-10-2093-2017
- Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model Y. Guo et al. 10.1016/j.rse.2017.06.001
- Effects of soiling on photovoltaic (PV) modules in the Atacama Desert R. Cordero et al. 10.1038/s41598-018-32291-8
- The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future L. Remer et al. 10.3390/rs12182900
- Estimating PM2.5 over southern Sweden using space-borne optical measurements P. Glantz et al. 10.1016/j.atmosenv.2009.05.017
- Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah D. Mallia et al. 10.1002/2014JD022472
- Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies D. Lary et al. 10.4137/EHI.S15664
- A key study on spatial source distribution of PM2.5 based on the airflow trajectory model C. Wang et al. 10.1080/01431161.2016.1251628
- Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors Y. Aliyu & J. Botai 10.1016/j.atmosenv.2018.02.034
- Simplicity versus accuracy for estimation of the PM2.5 concentration: a comparison between LUR and GWR methods across time scales B. Zou et al. 10.1080/14498596.2019.1624203
- Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? X. Ma et al. 10.1016/j.atmosres.2016.06.018
- The relation between columnar and surface aerosol optical properties in a background environment D. Szczepanik & K. Markowicz 10.1016/j.apr.2017.10.001
- Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data P. Lalitaporn & T. Mekaumnuaychai 10.1007/s10661-020-08346-7
- Essential variables for air quality estimation A. Shelestov et al. 10.1080/17538947.2019.1620881
- A robust calibration approach for PM<sub>10</sub> prediction from MODIS aerosol optical depth X. Yap & M. Hashim 10.5194/acp-13-3517-2013
- Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States Q. Di et al. 10.1021/acs.est.5b06121
- A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide J. Chen et al. 10.1016/j.envint.2019.104934
- Estimation of Surface Concentrations of Black Carbon from Long-Term Measurements at Aeronet Sites over Korea Y. Choi et al. 10.3390/rs12233904
- NO2lidar profile measurements for satellite interpretation and validation H. Volten et al. 10.1029/2009JD012441
- Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES) A. Chudnovsky et al. 10.1080/10962247.2012.695321
- Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression X. Hu et al. 10.1016/j.envres.2012.11.003
- Spatial Variation of the Relationship between PM2.5Concentrations and Meteorological Parameters in China G. Lin et al. 10.1155/2015/684618
- Exploratory study for estimating atmospheric low level particle pollution based on vertical integrated optical measurements H. Yahi et al. 10.1016/j.atmosenv.2010.11.047
- A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions A. Chudnovsky et al. 10.5194/acp-13-10907-2013
- PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region E. Emili et al. 10.1016/j.rse.2010.05.024
- Use of earth observation data for applications in public health Q. Weng et al. 10.1080/10106049.2013.838311
- Remote sensing of surface visibility from space: A look at the United States East Coast A. Kessner et al. 10.1016/j.atmosenv.2013.08.050
- Understanding an urbanizing planet: Strategic directions for remote sensing Z. Zhu et al. 10.1016/j.rse.2019.04.020
- Satellite AOD conversion into ground PM10, PM2.5 and PM1 over the Po valley (Milan, Italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology L. Ferrero et al. 10.1016/j.apr.2019.08.003
- Analysis of some factors related to dust storms occurrence in the Sistan region S. Namdari et al. 10.1007/s11356-021-13922-6
- A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval W. You et al. 10.1016/j.atmosres.2015.09.008
- Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity K. Kim et al. 10.1016/j.chemosphere.2015.09.040
- Satellite‐based top‐down Lagrangian approach to quantify aerosol emissions over California S. Nizar & B. Dodamani 10.1002/qj.3756
- Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth S. Lysenko & M. Kugeiko 10.1007/s10812-011-9526-6
- Predicting annual PM2.5 in mainland China from 2014 to 2020 using multi temporal satellite product: An improved deep learning approach with spatial generalization ability Z. Wang et al. 10.1016/j.isprsjprs.2022.03.002
- Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing–Tianjin–Hebei, China X. Wang & W. Sun 10.1016/j.atmosenv.2019.05.004
- Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia B. Chen et al. 10.1007/s11869-012-0192-5
- Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model M. Gupta & M. Mohan 10.3390/atmos12111417
- Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data Y. Song et al. 10.1371/journal.pone.0142149
- Superior PM2.5 Estimation by Integrating Aerosol Fine Mode Data from the Himawari-8 Satellite in Deep and Classical Machine Learning Models Z. Zang et al. 10.3390/rs13142779
- Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area L. Ferrero et al. 10.5194/acp-10-3915-2010
- Impact of Fine-Mode Fraction on the Relationship Between MODIS AOD and Ground-Based Particulate Matter G. Wei et al. 10.1007/s12524-021-01461-z
- Long-term trends in air quality in major cities in the UK and India: a view from space K. Vohra et al. 10.5194/acp-21-6275-2021
- Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS H. Chang et al. 10.1007/s10661-019-7421-4
- How well do satellite AOD observations represent the spatial and temporal variability of PM 2.5 concentration for the United States? J. Li et al. 10.1016/j.atmosenv.2014.12.010
- Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States H. Lee et al. 10.1021/acs.est.6b01438
- Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign G. Roelofs et al. 10.5194/acp-10-7709-2010
- New approach to monitor transboundary particulate pollution over Northeast Asia M. Park et al. 10.5194/acp-14-659-2014
- Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging N. Bègue et al. 10.1029/2012JD017611
- Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD W. You et al. 10.1007/s11356-015-6027-9
- Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count W. You et al. 10.1016/j.rse.2015.07.020
- Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations N. Benas et al. 10.1016/j.atmosenv.2013.07.012
- The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011 J. Xin et al. 10.1016/j.atmosres.2013.11.001
- Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: case study of Tehran, Iran S. Sotoudeheian & M. Arhami 10.1007/s40201-020-00509-5
- Physical and optical properties of atmospheric aerosols by in-situ and radiometric measurements M. Calvello et al. 10.5194/acp-10-2195-2010
- Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth L. Li et al. 10.1016/j.rse.2018.09.001
- PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India P. Gogikar et al. 10.1007/s12652-020-02457-2
- A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth Y. Chu et al. 10.3390/atmos7100129
- Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China X. Yan et al. 10.1016/j.atmosenv.2017.09.023
- Prediction of hourly ground-level PM 2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China X. Mao et al. 10.1016/j.apr.2017.04.002
- Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 C. Lin et al. 10.1016/j.rse.2014.09.015
- Improving the Accuracy of Daily Satellite-Derived Ground-Level Fine Aerosol Concentration Estimates for North America A. van Donkelaar et al. 10.1021/es3025319
- Air quality in the Galapagos Islands: A baseline view from remote sensing andin situmeasurements M. Cazorla & E. Herrera 10.1002/met.1878
- Differences in fine particle chemical composition on clear and cloudy days A. Christiansen et al. 10.5194/acp-20-11607-2020
- Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data A. Beloconi et al. 10.1016/j.rse.2015.10.017
- Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations H. Lee et al. 10.1016/j.envres.2012.06.011
- Monitoring and Forecasting Air Pollution Levels by Exploiting Satellite, Ground-Based, and Synoptic Data, Elaborated with Regression Models S. Michaelides et al. 10.1155/2017/2954010
- Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the Metropolitan Area of São Paulo A. Damascena et al. 10.1016/j.atmosenv.2020.117949
- A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China W. Song et al. 10.1016/j.rse.2014.08.008
- Assessment of African desert dust episodes over the southwest Spain at sea level using in situ aerosol optical and microphysical properties M. Sorribas et al. 10.3402/tellusb.v67.27482
- Temporal and spatial trends in aerosols near the English Channel – An air quality success story? M. Yang et al. 10.1016/j.aeaoa.2020.100074
- Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models W. You et al. 10.1016/j.scitotenv.2014.11.024
- Simulation of urban and regional air pollution in Bangladesh M. Muntaseer Billah Ibn Azkar et al. 10.1029/2011JD016509
- First TROPOMI Retrieval of Aerosol Effective Height Using O₄ Absorption Band at 477 nm and Aerosol Classification W. Choi et al. 10.1109/TGRS.2020.3044050
- Assessment of the clear-sky bias issue using continuous PM 10 data from two AERONET sites in Korea Y. Choi & Y. Ghim 10.1016/j.jes.2016.02.020
- Impact assessment of meteorological and environmental parameters on PM2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran) F. Hajiloo et al. 10.1007/s11356-018-1277-y
- Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation Y. Zhang & Z. Li 10.1016/j.rse.2015.02.005
- Overview and Applications of the New York State Mesonet Profiler Network B. Shrestha et al. 10.1175/JAMC-D-21-0104.1
- Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data Y. Charabi & A. Gastli 10.1016/j.renene.2011.12.005
- Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017 R. Xue et al. 10.1016/j.jclepro.2020.120563
3 citations as recorded by crossref.
- Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010 A. van Donkelaar et al. 10.1016/j.atmosenv.2011.07.068
- Optimal temporal scale for the correlation of AOD and ground measurements of PM2.5 in a real-time air quality estimation system H. Li et al. 10.1016/j.atmosenv.2009.06.004
- Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh A. Gupta et al. 10.1007/s42452-020-03829-1
Saved (final revised paper)
Saved (preprint)
Latest update: 03 Jul 2022
Altmetrics
Final-revised paper
Preprint