Articles | Volume 9, issue 3
https://doi.org/10.5194/acp-9-909-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-9-909-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands
M. Schaap
TNO, Business unit Environment, Health and Safety, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
A. Apituley
National Institute for Public Health and the Environment, P.O. Box 1, 3720 AH Bilthoven, The Netherlands
R. M. A. Timmermans
TNO, Business unit Environment, Health and Safety, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
R. B. A. Koelemeijer
Netherlands Environmental Assessment Agency (MNP), P.O. Box 303, 3720 AH Bilthoven, The Netherlands
G. de Leeuw
TNO, Business unit Environment, Health and Safety, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
Finnish Meteorological Institute, Climate Change Unit, P.O. Box 503, 00101 Helsinki, Finland
University of Helsinki, Department of Physics, P.O. Box 64, 00014 Helsinki, Finland
Viewed
Total article views: 7,347 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Oct 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,642 | 4,359 | 346 | 7,347 | 125 | 105 |
- HTML: 2,642
- PDF: 4,359
- XML: 346
- Total: 7,347
- BibTeX: 125
- EndNote: 105
Total article views: 6,658 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 05 Feb 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,344 | 3,979 | 335 | 6,658 | 114 | 101 |
- HTML: 2,344
- PDF: 3,979
- XML: 335
- Total: 6,658
- BibTeX: 114
- EndNote: 101
Total article views: 689 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Oct 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
298 | 380 | 11 | 689 | 11 | 4 |
- HTML: 298
- PDF: 380
- XML: 11
- Total: 689
- BibTeX: 11
- EndNote: 4
Cited
178 citations as recorded by crossref.
- Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? R. Hoff & S. Christopher 10.3155/1047-3289.59.6.645
- An urban solar flux island: Measurements from London C. Ryder & R. Toumi 10.1016/j.atmosenv.2011.03.045
- Machine learning in geosciences and remote sensing D. Lary et al. 10.1016/j.gsf.2015.07.003
- Recent changes of trans-boundary air pollution over the Yellow Sea: Implications for future air quality in South Korea P. Bhardwaj et al. 10.1016/j.envpol.2019.01.048
- Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland D. Wang et al. 10.5194/acp-19-13097-2019
- Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application A. van Donkelaar et al. 10.1289/ehp.0901623
- The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta P. Shao et al. 10.1016/j.apr.2016.09.001
- Estimation of surface-level PM 2.5 concentration using aerosol optical thickness through aerosol type analysis method Q. Chen et al. 10.1016/j.atmosenv.2017.03.050
- WITHDRAWN: Prevention and control of motor vehicle exhaust pollution based on internet of things system and cloud computing Y. Zhang et al. 10.1016/j.micpro.2020.103373
- Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms M. Collaud Coen et al. 10.5194/amt-3-457-2010
- Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5 Y. Xu et al. 10.1016/j.envpol.2018.08.029
- Aerosol effects on the UV irradiance in Santiago de Chile R. Cordero et al. 10.1016/j.atmosres.2014.07.002
- A Modified Aerosol Free Vegetation Index Algorithm for Aerosol Optical Depth Retrieval Using GOSAT TANSO-CAI Data G. Zhong et al. 10.3390/rs8120998
- Assessment of satellite-based aerosol optical depth using continuous lidar observation C. Lin et al. 10.1016/j.atmosenv.2016.06.012
- Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region J. Chen et al. 10.1016/j.atmosres.2014.02.011
- Regional characteristics of the relationship between columnar AOD and surface PM 2.5 : Application of lidar aerosol extinction profiles over Baltimore–Washington Corridor during DISCOVER-AQ D. Chu et al. 10.1016/j.atmosenv.2014.11.034
- Spatial distribution of aerosol optical depth over India during COVID-19 lockdown phase-1 S. Rani & R. Kumar 10.1007/s41324-022-00442-9
- Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign J. Huang et al. 10.1029/2010JD014910
- Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia N. Kamarul Zaman et al. 10.1016/j.atmosres.2017.04.019
- A novel calibration approach of MODIS AOD data to predict PM<sub>2.5</sub> concentrations H. Lee et al. 10.5194/acp-11-7991-2011
- Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model C. Brokamp et al. 10.1021/acs.est.7b05381
- Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China L. Li et al. 10.3390/rs70607914
- The observation‐based relationships between PM2.5 and AOD over China J. Xin et al. 10.1002/2015JD024655
- Modeling inorganic nitrogen deposition in Guangdong province, China Z. Huang et al. 10.1016/j.atmosenv.2015.03.014
- Correlation between PM concentrations and aerosol optical depth in eastern China J. Guo et al. 10.1016/j.atmosenv.2009.08.026
- Cloud detection and classification based on MAX-DOAS observations T. Wagner et al. 10.5194/amt-7-1289-2014
- Joint features random forest (JFRF) model for mapping hourly surface PM2.5 over China L. Dong et al. 10.1016/j.atmosenv.2022.118969
- Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach J. Handschuh et al. 10.3390/rs15082064
- The impact of weather and atmospheric circulation on O<sub>3</sub> and PM<sub>10</sub> levels at a rural mid-latitude site M. Demuzere et al. 10.5194/acp-9-2695-2009
- Estimation of aerosol water and chemical composition from AERONET Sun–sky radiometer measurements at Cabauw, the Netherlands A. van Beelen et al. 10.5194/acp-14-5969-2014
- Holistics 3.0 for Health D. Lary et al. 10.3390/ijgi3031023
- Spatio-temporal analysis of MODIS AOD over western part of Iran S. Namdari et al. 10.1007/s12517-015-2029-7
- Satellite Remote Sensing for Estimating PM2.5 and Its Components Y. Li et al. 10.1007/s40726-020-00170-4
- Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution S. Wu et al. 10.3390/rs16040604
- Short period PM2.5 prediction based on multivariate linear regression model R. Zhao et al. 10.1371/journal.pone.0201011
- Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives Y. Zhang et al. 10.1016/j.fmre.2021.04.007
- Satellite remote sensing of fine particulate air pollutants over Indian mega cities V. Sreekanth et al. 10.1016/j.asr.2017.08.008
- Application of MODIS Products for Air Quality Studies Over Southeastern Italy A. Dinoi et al. 10.3390/rs2071767
- Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran S. Sotoudeheian & M. Arhami 10.1186/s40201-014-0122-6
- Analysis of long-range transport of aerosols for Portugal using 3D chemical transport model and satellite measurements O. Tchepel et al. 10.1016/j.atmosenv.2012.09.061
- Spatial and Temporal Variations of Satellite-Derived Multi-Year Particulate Data of Saudi Arabia: An Exploratory Analysis Y. Aina et al. 10.3390/ijerph111111152
- A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges A. Ranjan et al. 10.1007/s13143-020-00215-0
- Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model S. Ghotbi et al. 10.1016/j.atmosenv.2016.06.057
- An Improved Deep Learning Approach Considering Spatiotemporal Heterogeneity for PM2.5 Prediction: A Case Study of Xinjiang, China Y. Wu et al. 10.3390/atmos15040460
- Annual cycle in co‐located in situ, total‐column, and height‐resolved aerosol observations in the Po Valley (Italy): Implications for ground‐level particulate matter mass concentration estimation from remote sensing F. Barnaba et al. 10.1029/2009JD013002
- Constraining chemical transport PM<sub>2.5</sub> modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley M. Friberg et al. 10.5194/acp-18-12891-2018
- A New Coupling Method for PM2.5 Concentration Estimation by the Satellite-Based Semiempirical Model and Numerical Model S. Yuan et al. 10.3390/rs14102360
- Estimating Ground-Level Hourly PM2.5 Concentrations in Thailand Using Satellite Data: A Log-Linear Model With Sum Contrast Analysis S. Buya et al. 10.1109/JSTARS.2024.3384964
- Remote sensing of ground-level PM2.5 combining AOD and backscattering profile S. Li et al. 10.1016/j.rse.2016.05.025
- Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS J. Handschuh et al. 10.1016/j.rsase.2022.100716
- Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land‐atmosphere system E. Barbaro et al. 10.1002/2013JD021237
- Estimation of PM<sub>10</sub> concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign S. Seo et al. 10.5194/acp-15-319-2015
- Spatial analysis of aerosol optical depth obtained by air quality modelling and SEVIRI satellite observations over Portugal A. Fernandes et al. 10.1016/j.apr.2018.07.011
- Estimation of Ultrahigh Resolution PM2.5 Mass Concentrations Based on Mie Scattering Theory by Using Landsat8 OLI Images over Pearl River Delta Y. Tang et al. 10.3390/rs13132463
- Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study T. Nguyen et al. 10.1088/1748-9326/10/9/095016
- Image-to-Image Training for Spatially Seamless Air Temperature Estimation With Satellite Images and Station Data P. Su et al. 10.1109/JSTARS.2023.3256363
- Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011 K. Wang et al. 10.5194/acp-12-9387-2012
- Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015 C. Jung et al. 10.1016/j.envpol.2017.11.016
- Factors controlling the long-term (2009–2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya, India C. Sarkar et al. 10.1016/j.scitotenv.2018.11.367
- Observations and Impacts of Long‐Range Transported Wildfire Smoke on Air Quality Across New York State During July 2021 B. Shrestha et al. 10.1029/2022GL100216
- Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach X. Hu et al. 10.1021/acs.est.7b01210
- Factors that influence surface PM<sub>2.5</sub> values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ S. Crumeyrolle et al. 10.5194/acp-14-2139-2014
- Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub-urban area M. Khoshsima et al. 10.1016/j.jaerosci.2013.10.008
- Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO<sub>2</sub> radicals H. Liang et al. 10.5194/acp-13-11259-2013
- Air Quality Assessment over Sudan using NASA Remote Sensing Satellites Data and MERRA-2 Model I. Muntasir et al. 10.30799/jespr.207.20060302
- Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD Y. Xie et al. 10.1021/acs.est.5b01413
- Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX‐B validation campaigns J. Hains et al. 10.1029/2009JD012399
- Estimating Spatio-Temporal Variations of PM2.5 Concentrations Using VIIRS-Derived AOD in the Guanzhong Basin, China K. Zhang et al. 10.3390/rs11222679
- Monitoring air quality of Sharkia Governorate using remote sensing A. Nagy et al. 10.1007/s11600-023-01283-2
- Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East S. Namdari et al. 10.1016/j.atmosenv.2017.11.016
- Evaluation of Machine Learning Models for Estimating PM2.5 Concentrations across Malaysia N. Zaman et al. 10.3390/app11167326
- Spatiotemporal Distributions of PM2.5 Concentrations in the Beijing–Tianjin–Hebei Region From 2013 to 2020 X. Yang et al. 10.3389/fenvs.2022.842237
- A Simple Band Ratio Library (BRL) Algorithm for Retrieval of Hourly Aerosol Optical Depth Using FY-4A AGRI Geostationary Satellite Data X. Jiang et al. 10.3390/rs14194861
- Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran M. Foroushani et al. 10.1007/s40333-020-0079-5
- Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks W. Zhang et al. 10.1007/s12524-021-01344-3
- Estimating ground-level PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer Z. Zang et al. 10.1016/j.scitotenv.2016.09.186
- Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia S. Pani et al. 10.1016/j.scitotenv.2018.03.204
- Estimation of Particulate Matter (PM2.5) Over Kolkata J. Singh et al. 10.1007/s00024-023-03418-4
- A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique R. Park et al. 10.5194/acp-11-12275-2011
- Long term analysis of the columnar and surface aerosol relationship at an urban European coastal site S. Segura et al. 10.1016/j.atmosenv.2017.08.012
- Impact of urban pollution emitted in Warsaw on aerosol properties O. Zawadzka et al. 10.1016/j.atmosenv.2012.11.065
- Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent K. Markowicz & M. Chiliński 10.3390/s20092617
- Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods Z. Zang et al. 10.3390/atmos8060104
- Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States V. Buchard et al. 10.1016/j.atmosenv.2015.11.004
- Determination of tropospheric vertical columns of NO<sub>2</sub> and aerosol optical properties in a rural setting using MAX-DOAS J. Halla et al. 10.5194/acp-11-12475-2011
- Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter S. Li et al. 10.5194/amt-10-2093-2017
- Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model Y. Guo et al. 10.1016/j.rse.2017.06.001
- Effects of soiling on photovoltaic (PV) modules in the Atacama Desert R. Cordero et al. 10.1038/s41598-018-32291-8
- Online vertical measurement of air pollutants: Development of a monitoring platform on a skyscraper and its application in Shanghai X. Hao et al. 10.1016/j.apr.2022.101477
- The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future L. Remer et al. 10.3390/rs12182900
- Estimating PM2.5 over southern Sweden using space-borne optical measurements P. Glantz et al. 10.1016/j.atmosenv.2009.05.017
- Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah D. Mallia et al. 10.1002/2014JD022472
- Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies D. Lary et al. 10.4137/EHI.S15664
- A key study on spatial source distribution of PM2.5 based on the airflow trajectory model C. Wang et al. 10.1080/01431161.2016.1251628
- Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors Y. Aliyu & J. Botai 10.1016/j.atmosenv.2018.02.034
- Simplicity versus accuracy for estimation of the PM2.5 concentration: a comparison between LUR and GWR methods across time scales B. Zou et al. 10.1080/14498596.2019.1624203
- Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? X. Ma et al. 10.1016/j.atmosres.2016.06.018
- The relation between columnar and surface aerosol optical properties in a background environment D. Szczepanik & K. Markowicz 10.1016/j.apr.2017.10.001
- Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data P. Lalitaporn & T. Mekaumnuaychai 10.1007/s10661-020-08346-7
- Spring 2020 Atmospheric Aerosol Contamination over Kyiv City C. Zhang et al. 10.3390/atmos13050687
- Essential variables for air quality estimation A. Shelestov et al. 10.1080/17538947.2019.1620881
- A robust calibration approach for PM<sub>10</sub> prediction from MODIS aerosol optical depth X. Yap & M. Hashim 10.5194/acp-13-3517-2013
- Assessing PM2.5Exposures with High Spatiotemporal Resolution across the Continental United States Q. Di et al. 10.1021/acs.est.5b06121
- A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide J. Chen et al. 10.1016/j.envint.2019.104934
- Estimation of Surface Concentrations of Black Carbon from Long-Term Measurements at Aeronet Sites over Korea Y. Choi et al. 10.3390/rs12233904
- NO2 lidar profile measurements for satellite interpretation and validation H. Volten et al. 10.1029/2009JD012441
- Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES) A. Chudnovsky et al. 10.1080/10962247.2012.695321
- Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression X. Hu et al. 10.1016/j.envres.2012.11.003
- Spatial Variation of the Relationship between PM2.5Concentrations and Meteorological Parameters in China G. Lin et al. 10.1155/2015/684618
- Exploratory study for estimating atmospheric low level particle pollution based on vertical integrated optical measurements H. Yahi et al. 10.1016/j.atmosenv.2010.11.047
- A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions A. Chudnovsky et al. 10.5194/acp-13-10907-2013
- Estimating high-spatial-resolution daily PM2.5 mass concentration from satellite top-of-atmosphere reflectance based on an improved random forest model Y. Tang et al. 10.1016/j.atmosenv.2023.119724
- PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region E. Emili et al. 10.1016/j.rse.2010.05.024
- Use of earth observation data for applications in public health Q. Weng et al. 10.1080/10106049.2013.838311
- Remote sensing of surface visibility from space: A look at the United States East Coast A. Kessner et al. 10.1016/j.atmosenv.2013.08.050
- Understanding an urbanizing planet: Strategic directions for remote sensing Z. Zhu et al. 10.1016/j.rse.2019.04.020
- Satellite AOD conversion into ground PM10, PM2.5 and PM1 over the Po valley (Milan, Italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology L. Ferrero et al. 10.1016/j.apr.2019.08.003
- Analysis of some factors related to dust storms occurrence in the Sistan region S. Namdari et al. 10.1007/s11356-021-13922-6
- Mapping nighttime PM2.5 concentrations in Nanjing, China based on NPP/VIIRS nighttime light data H. Chen et al. 10.1016/j.atmosenv.2023.119767
- Seasonal distribution of AOT and its relationship with air pollutants in central Bangladesh using remote sensing and machine learning tools M. Hassan et al. 10.1016/j.cscee.2023.100399
- A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval W. You et al. 10.1016/j.atmosres.2015.09.008
- Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity K. Kim et al. 10.1016/j.chemosphere.2015.09.040
- Satellite‐based top‐down Lagrangian approach to quantify aerosol emissions over California S. Nizar & B. Dodamani 10.1002/qj.3756
- Evaluation of the New York State Mesonet Profiler Network data B. Shrestha et al. 10.5194/amt-15-6011-2022
- Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth S. Lysenko & M. Kugeiko 10.1007/s10812-011-9526-6
- Predicting annual PM2.5 in mainland China from 2014 to 2020 using multi temporal satellite product: An improved deep learning approach with spatial generalization ability Z. Wang et al. 10.1016/j.isprsjprs.2022.03.002
- Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing–Tianjin–Hebei, China X. Wang & W. Sun 10.1016/j.atmosenv.2019.05.004
- Exploring the effect of waterbodies coupled with other environmental parameters to model PM2.5 over Delhi-NCT in northwest India B. Gayen et al. 10.1016/j.apr.2022.101614
- Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia B. Chen et al. 10.1007/s11869-012-0192-5
- Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model M. Gupta & M. Mohan 10.3390/atmos12111417
- Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data Y. Song et al. 10.1371/journal.pone.0142149
- Superior PM2.5 Estimation by Integrating Aerosol Fine Mode Data from the Himawari-8 Satellite in Deep and Classical Machine Learning Models Z. Zang et al. 10.3390/rs13142779
- A Comprehensive Review of a Decade of Field PV Soiling Assessment in QEERI’s Outdoor Test Facility in Qatar: Learned Lessons and Recommendations B. Aïssa et al. 10.3390/en16135224
- Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area L. Ferrero et al. 10.5194/acp-10-3915-2010
- Impact of Fine-Mode Fraction on the Relationship Between MODIS AOD and Ground-Based Particulate Matter G. Wei et al. 10.1007/s12524-021-01461-z
- Long-term trends in air quality in major cities in the UK and India: a view from space K. Vohra et al. 10.5194/acp-21-6275-2021
- Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS H. Chang et al. 10.1007/s10661-019-7421-4
- How well do satellite AOD observations represent the spatial and temporal variability of PM 2.5 concentration for the United States? J. Li et al. 10.1016/j.atmosenv.2014.12.010
- Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States H. Lee et al. 10.1021/acs.est.6b01438
- Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign G. Roelofs et al. 10.5194/acp-10-7709-2010
- New approach to monitor transboundary particulate pollution over Northeast Asia M. Park et al. 10.5194/acp-14-659-2014
- Long‐range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging N. Bègue et al. 10.1029/2012JD017611
- Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD W. You et al. 10.1007/s11356-015-6027-9
- Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count W. You et al. 10.1016/j.rse.2015.07.020
- Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations N. Benas et al. 10.1016/j.atmosenv.2013.07.012
- The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011 J. Xin et al. 10.1016/j.atmosres.2013.11.001
- Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: case study of Tehran, Iran S. Sotoudeheian & M. Arhami 10.1007/s40201-020-00509-5
- Physical and optical properties of atmospheric aerosols by in-situ and radiometric measurements M. Calvello et al. 10.5194/acp-10-2195-2010
- Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth L. Li et al. 10.1016/j.rse.2018.09.001
- PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India P. Gogikar et al. 10.1007/s12652-020-02457-2
- A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth Y. Chu et al. 10.3390/atmos7100129
- Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China X. Yan et al. 10.1016/j.atmosenv.2017.09.023
- Prediction of hourly ground-level PM 2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China X. Mao et al. 10.1016/j.apr.2017.04.002
- Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 C. Lin et al. 10.1016/j.rse.2014.09.015
- Improving the Accuracy of Daily Satellite-Derived Ground-Level Fine Aerosol Concentration Estimates for North America A. van Donkelaar et al. 10.1021/es3025319
- Air quality in the Galapagos Islands: A baseline view from remote sensing and in situ measurements M. Cazorla & E. Herrera 10.1002/met.1878
- Differences in fine particle chemical composition on clear and cloudy days A. Christiansen et al. 10.5194/acp-20-11607-2020
- Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data A. Beloconi et al. 10.1016/j.rse.2015.10.017
- Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments L. Di Antonio et al. 10.5194/acp-23-12455-2023
- Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations H. Lee et al. 10.1016/j.envres.2012.06.011
- Monitoring and Forecasting Air Pollution Levels by Exploiting Satellite, Ground-Based, and Synoptic Data, Elaborated with Regression Models S. Michaelides et al. 10.1155/2017/2954010
- Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the Metropolitan Area of São Paulo A. Damascena et al. 10.1016/j.atmosenv.2020.117949
- A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China W. Song et al. 10.1016/j.rse.2014.08.008
- Assessment of African desert dust episodes over the southwest Spain at sea level using in situ aerosol optical and microphysical properties M. Sorribas et al. 10.3402/tellusb.v67.27482
- Temporal and spatial trends in aerosols near the English Channel – An air quality success story? M. Yang et al. 10.1016/j.aeaoa.2020.100074
- Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models W. You et al. 10.1016/j.scitotenv.2014.11.024
- Temporal Variability and Relationship between Surface Concentration of PM2.5 and Aerosol Optical Depth According to Measurements in the Middle Urals A. Luzhetskaya et al. 10.1134/S1024856023010098
- Review of retrieval of aerosol optical depth to estimate particle concentration and its challenges based on spatiotemporal relationships by various spectroradiometer models C. Samuel et al. 10.1002/gj.4780
- First TROPOMI Retrieval of Aerosol Effective Height Using O₄ Absorption Band at 477 nm and Aerosol Classification W. Choi et al. 10.1109/TGRS.2020.3044050
- Assessment of the clear-sky bias issue using continuous PM 10 data from two AERONET sites in Korea Y. Choi & Y. Ghim 10.1016/j.jes.2016.02.020
- Impact assessment of meteorological and environmental parameters on PM2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran) F. Hajiloo et al. 10.1007/s11356-018-1277-y
- Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation Y. Zhang & Z. Li 10.1016/j.rse.2015.02.005
- Overview and Applications of the New York State Mesonet Profiler Network B. Shrestha et al. 10.1175/JAMC-D-21-0104.1
- Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data Y. Charabi & A. Gastli 10.1016/j.renene.2011.12.005
- Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017 R. Xue et al. 10.1016/j.jclepro.2020.120563
- Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010 A. van Donkelaar et al. 10.1016/j.atmosenv.2011.07.068
- Optimal temporal scale for the correlation of AOD and ground measurements of PM2.5 in a real-time air quality estimation system H. Li et al. 10.1016/j.atmosenv.2009.06.004
- Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh A. Gupta et al. 10.1007/s42452-020-03829-1
175 citations as recorded by crossref.
- Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? R. Hoff & S. Christopher 10.3155/1047-3289.59.6.645
- An urban solar flux island: Measurements from London C. Ryder & R. Toumi 10.1016/j.atmosenv.2011.03.045
- Machine learning in geosciences and remote sensing D. Lary et al. 10.1016/j.gsf.2015.07.003
- Recent changes of trans-boundary air pollution over the Yellow Sea: Implications for future air quality in South Korea P. Bhardwaj et al. 10.1016/j.envpol.2019.01.048
- Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland D. Wang et al. 10.5194/acp-19-13097-2019
- Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application A. van Donkelaar et al. 10.1289/ehp.0901623
- The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta P. Shao et al. 10.1016/j.apr.2016.09.001
- Estimation of surface-level PM 2.5 concentration using aerosol optical thickness through aerosol type analysis method Q. Chen et al. 10.1016/j.atmosenv.2017.03.050
- WITHDRAWN: Prevention and control of motor vehicle exhaust pollution based on internet of things system and cloud computing Y. Zhang et al. 10.1016/j.micpro.2020.103373
- Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms M. Collaud Coen et al. 10.5194/amt-3-457-2010
- Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5 Y. Xu et al. 10.1016/j.envpol.2018.08.029
- Aerosol effects on the UV irradiance in Santiago de Chile R. Cordero et al. 10.1016/j.atmosres.2014.07.002
- A Modified Aerosol Free Vegetation Index Algorithm for Aerosol Optical Depth Retrieval Using GOSAT TANSO-CAI Data G. Zhong et al. 10.3390/rs8120998
- Assessment of satellite-based aerosol optical depth using continuous lidar observation C. Lin et al. 10.1016/j.atmosenv.2016.06.012
- Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region J. Chen et al. 10.1016/j.atmosres.2014.02.011
- Regional characteristics of the relationship between columnar AOD and surface PM 2.5 : Application of lidar aerosol extinction profiles over Baltimore–Washington Corridor during DISCOVER-AQ D. Chu et al. 10.1016/j.atmosenv.2014.11.034
- Spatial distribution of aerosol optical depth over India during COVID-19 lockdown phase-1 S. Rani & R. Kumar 10.1007/s41324-022-00442-9
- Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign J. Huang et al. 10.1029/2010JD014910
- Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia N. Kamarul Zaman et al. 10.1016/j.atmosres.2017.04.019
- A novel calibration approach of MODIS AOD data to predict PM<sub>2.5</sub> concentrations H. Lee et al. 10.5194/acp-11-7991-2011
- Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model C. Brokamp et al. 10.1021/acs.est.7b05381
- Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China L. Li et al. 10.3390/rs70607914
- The observation‐based relationships between PM2.5 and AOD over China J. Xin et al. 10.1002/2015JD024655
- Modeling inorganic nitrogen deposition in Guangdong province, China Z. Huang et al. 10.1016/j.atmosenv.2015.03.014
- Correlation between PM concentrations and aerosol optical depth in eastern China J. Guo et al. 10.1016/j.atmosenv.2009.08.026
- Cloud detection and classification based on MAX-DOAS observations T. Wagner et al. 10.5194/amt-7-1289-2014
- Joint features random forest (JFRF) model for mapping hourly surface PM2.5 over China L. Dong et al. 10.1016/j.atmosenv.2022.118969
- Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach J. Handschuh et al. 10.3390/rs15082064
- The impact of weather and atmospheric circulation on O<sub>3</sub> and PM<sub>10</sub> levels at a rural mid-latitude site M. Demuzere et al. 10.5194/acp-9-2695-2009
- Estimation of aerosol water and chemical composition from AERONET Sun–sky radiometer measurements at Cabauw, the Netherlands A. van Beelen et al. 10.5194/acp-14-5969-2014
- Holistics 3.0 for Health D. Lary et al. 10.3390/ijgi3031023
- Spatio-temporal analysis of MODIS AOD over western part of Iran S. Namdari et al. 10.1007/s12517-015-2029-7
- Satellite Remote Sensing for Estimating PM2.5 and Its Components Y. Li et al. 10.1007/s40726-020-00170-4
- Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution S. Wu et al. 10.3390/rs16040604
- Short period PM2.5 prediction based on multivariate linear regression model R. Zhao et al. 10.1371/journal.pone.0201011
- Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives Y. Zhang et al. 10.1016/j.fmre.2021.04.007
- Satellite remote sensing of fine particulate air pollutants over Indian mega cities V. Sreekanth et al. 10.1016/j.asr.2017.08.008
- Application of MODIS Products for Air Quality Studies Over Southeastern Italy A. Dinoi et al. 10.3390/rs2071767
- Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran S. Sotoudeheian & M. Arhami 10.1186/s40201-014-0122-6
- Analysis of long-range transport of aerosols for Portugal using 3D chemical transport model and satellite measurements O. Tchepel et al. 10.1016/j.atmosenv.2012.09.061
- Spatial and Temporal Variations of Satellite-Derived Multi-Year Particulate Data of Saudi Arabia: An Exploratory Analysis Y. Aina et al. 10.3390/ijerph111111152
- A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges A. Ranjan et al. 10.1007/s13143-020-00215-0
- Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model S. Ghotbi et al. 10.1016/j.atmosenv.2016.06.057
- An Improved Deep Learning Approach Considering Spatiotemporal Heterogeneity for PM2.5 Prediction: A Case Study of Xinjiang, China Y. Wu et al. 10.3390/atmos15040460
- Annual cycle in co‐located in situ, total‐column, and height‐resolved aerosol observations in the Po Valley (Italy): Implications for ground‐level particulate matter mass concentration estimation from remote sensing F. Barnaba et al. 10.1029/2009JD013002
- Constraining chemical transport PM<sub>2.5</sub> modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley M. Friberg et al. 10.5194/acp-18-12891-2018
- A New Coupling Method for PM2.5 Concentration Estimation by the Satellite-Based Semiempirical Model and Numerical Model S. Yuan et al. 10.3390/rs14102360
- Estimating Ground-Level Hourly PM2.5 Concentrations in Thailand Using Satellite Data: A Log-Linear Model With Sum Contrast Analysis S. Buya et al. 10.1109/JSTARS.2024.3384964
- Remote sensing of ground-level PM2.5 combining AOD and backscattering profile S. Li et al. 10.1016/j.rse.2016.05.025
- Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS J. Handschuh et al. 10.1016/j.rsase.2022.100716
- Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land‐atmosphere system E. Barbaro et al. 10.1002/2013JD021237
- Estimation of PM<sub>10</sub> concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign S. Seo et al. 10.5194/acp-15-319-2015
- Spatial analysis of aerosol optical depth obtained by air quality modelling and SEVIRI satellite observations over Portugal A. Fernandes et al. 10.1016/j.apr.2018.07.011
- Estimation of Ultrahigh Resolution PM2.5 Mass Concentrations Based on Mie Scattering Theory by Using Landsat8 OLI Images over Pearl River Delta Y. Tang et al. 10.3390/rs13132463
- Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study T. Nguyen et al. 10.1088/1748-9326/10/9/095016
- Image-to-Image Training for Spatially Seamless Air Temperature Estimation With Satellite Images and Station Data P. Su et al. 10.1109/JSTARS.2023.3256363
- Contrasting trends of mass and optical properties of aerosols over the Northern Hemisphere from 1992 to 2011 K. Wang et al. 10.5194/acp-12-9387-2012
- Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015 C. Jung et al. 10.1016/j.envpol.2017.11.016
- Factors controlling the long-term (2009–2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya, India C. Sarkar et al. 10.1016/j.scitotenv.2018.11.367
- Observations and Impacts of Long‐Range Transported Wildfire Smoke on Air Quality Across New York State During July 2021 B. Shrestha et al. 10.1029/2022GL100216
- Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach X. Hu et al. 10.1021/acs.est.7b01210
- Factors that influence surface PM<sub>2.5</sub> values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ S. Crumeyrolle et al. 10.5194/acp-14-2139-2014
- Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub-urban area M. Khoshsima et al. 10.1016/j.jaerosci.2013.10.008
- Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO<sub>2</sub> radicals H. Liang et al. 10.5194/acp-13-11259-2013
- Air Quality Assessment over Sudan using NASA Remote Sensing Satellites Data and MERRA-2 Model I. Muntasir et al. 10.30799/jespr.207.20060302
- Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD Y. Xie et al. 10.1021/acs.est.5b01413
- Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX‐B validation campaigns J. Hains et al. 10.1029/2009JD012399
- Estimating Spatio-Temporal Variations of PM2.5 Concentrations Using VIIRS-Derived AOD in the Guanzhong Basin, China K. Zhang et al. 10.3390/rs11222679
- Monitoring air quality of Sharkia Governorate using remote sensing A. Nagy et al. 10.1007/s11600-023-01283-2
- Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East S. Namdari et al. 10.1016/j.atmosenv.2017.11.016
- Evaluation of Machine Learning Models for Estimating PM2.5 Concentrations across Malaysia N. Zaman et al. 10.3390/app11167326
- Spatiotemporal Distributions of PM2.5 Concentrations in the Beijing–Tianjin–Hebei Region From 2013 to 2020 X. Yang et al. 10.3389/fenvs.2022.842237
- A Simple Band Ratio Library (BRL) Algorithm for Retrieval of Hourly Aerosol Optical Depth Using FY-4A AGRI Geostationary Satellite Data X. Jiang et al. 10.3390/rs14194861
- Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran M. Foroushani et al. 10.1007/s40333-020-0079-5
- Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks W. Zhang et al. 10.1007/s12524-021-01344-3
- Estimating ground-level PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer Z. Zang et al. 10.1016/j.scitotenv.2016.09.186
- Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia S. Pani et al. 10.1016/j.scitotenv.2018.03.204
- Estimation of Particulate Matter (PM2.5) Over Kolkata J. Singh et al. 10.1007/s00024-023-03418-4
- A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique R. Park et al. 10.5194/acp-11-12275-2011
- Long term analysis of the columnar and surface aerosol relationship at an urban European coastal site S. Segura et al. 10.1016/j.atmosenv.2017.08.012
- Impact of urban pollution emitted in Warsaw on aerosol properties O. Zawadzka et al. 10.1016/j.atmosenv.2012.11.065
- Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent K. Markowicz & M. Chiliński 10.3390/s20092617
- Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods Z. Zang et al. 10.3390/atmos8060104
- Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States V. Buchard et al. 10.1016/j.atmosenv.2015.11.004
- Determination of tropospheric vertical columns of NO<sub>2</sub> and aerosol optical properties in a rural setting using MAX-DOAS J. Halla et al. 10.5194/acp-11-12475-2011
- Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter S. Li et al. 10.5194/amt-10-2093-2017
- Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model Y. Guo et al. 10.1016/j.rse.2017.06.001
- Effects of soiling on photovoltaic (PV) modules in the Atacama Desert R. Cordero et al. 10.1038/s41598-018-32291-8
- Online vertical measurement of air pollutants: Development of a monitoring platform on a skyscraper and its application in Shanghai X. Hao et al. 10.1016/j.apr.2022.101477
- The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future L. Remer et al. 10.3390/rs12182900
- Estimating PM2.5 over southern Sweden using space-borne optical measurements P. Glantz et al. 10.1016/j.atmosenv.2009.05.017
- Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah D. Mallia et al. 10.1002/2014JD022472
- Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies D. Lary et al. 10.4137/EHI.S15664
- A key study on spatial source distribution of PM2.5 based on the airflow trajectory model C. Wang et al. 10.1080/01431161.2016.1251628
- Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors Y. Aliyu & J. Botai 10.1016/j.atmosenv.2018.02.034
- Simplicity versus accuracy for estimation of the PM2.5 concentration: a comparison between LUR and GWR methods across time scales B. Zou et al. 10.1080/14498596.2019.1624203
- Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? X. Ma et al. 10.1016/j.atmosres.2016.06.018
- The relation between columnar and surface aerosol optical properties in a background environment D. Szczepanik & K. Markowicz 10.1016/j.apr.2017.10.001
- Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data P. Lalitaporn & T. Mekaumnuaychai 10.1007/s10661-020-08346-7
- Spring 2020 Atmospheric Aerosol Contamination over Kyiv City C. Zhang et al. 10.3390/atmos13050687
- Essential variables for air quality estimation A. Shelestov et al. 10.1080/17538947.2019.1620881
- A robust calibration approach for PM<sub>10</sub> prediction from MODIS aerosol optical depth X. Yap & M. Hashim 10.5194/acp-13-3517-2013
- Assessing PM2.5Exposures with High Spatiotemporal Resolution across the Continental United States Q. Di et al. 10.1021/acs.est.5b06121
- A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide J. Chen et al. 10.1016/j.envint.2019.104934
- Estimation of Surface Concentrations of Black Carbon from Long-Term Measurements at Aeronet Sites over Korea Y. Choi et al. 10.3390/rs12233904
- NO2 lidar profile measurements for satellite interpretation and validation H. Volten et al. 10.1029/2009JD012441
- Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES) A. Chudnovsky et al. 10.1080/10962247.2012.695321
- Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression X. Hu et al. 10.1016/j.envres.2012.11.003
- Spatial Variation of the Relationship between PM2.5Concentrations and Meteorological Parameters in China G. Lin et al. 10.1155/2015/684618
- Exploratory study for estimating atmospheric low level particle pollution based on vertical integrated optical measurements H. Yahi et al. 10.1016/j.atmosenv.2010.11.047
- A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions A. Chudnovsky et al. 10.5194/acp-13-10907-2013
- Estimating high-spatial-resolution daily PM2.5 mass concentration from satellite top-of-atmosphere reflectance based on an improved random forest model Y. Tang et al. 10.1016/j.atmosenv.2023.119724
- PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region E. Emili et al. 10.1016/j.rse.2010.05.024
- Use of earth observation data for applications in public health Q. Weng et al. 10.1080/10106049.2013.838311
- Remote sensing of surface visibility from space: A look at the United States East Coast A. Kessner et al. 10.1016/j.atmosenv.2013.08.050
- Understanding an urbanizing planet: Strategic directions for remote sensing Z. Zhu et al. 10.1016/j.rse.2019.04.020
- Satellite AOD conversion into ground PM10, PM2.5 and PM1 over the Po valley (Milan, Italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology L. Ferrero et al. 10.1016/j.apr.2019.08.003
- Analysis of some factors related to dust storms occurrence in the Sistan region S. Namdari et al. 10.1007/s11356-021-13922-6
- Mapping nighttime PM2.5 concentrations in Nanjing, China based on NPP/VIIRS nighttime light data H. Chen et al. 10.1016/j.atmosenv.2023.119767
- Seasonal distribution of AOT and its relationship with air pollutants in central Bangladesh using remote sensing and machine learning tools M. Hassan et al. 10.1016/j.cscee.2023.100399
- A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval W. You et al. 10.1016/j.atmosres.2015.09.008
- Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity K. Kim et al. 10.1016/j.chemosphere.2015.09.040
- Satellite‐based top‐down Lagrangian approach to quantify aerosol emissions over California S. Nizar & B. Dodamani 10.1002/qj.3756
- Evaluation of the New York State Mesonet Profiler Network data B. Shrestha et al. 10.5194/amt-15-6011-2022
- Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth S. Lysenko & M. Kugeiko 10.1007/s10812-011-9526-6
- Predicting annual PM2.5 in mainland China from 2014 to 2020 using multi temporal satellite product: An improved deep learning approach with spatial generalization ability Z. Wang et al. 10.1016/j.isprsjprs.2022.03.002
- Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing–Tianjin–Hebei, China X. Wang & W. Sun 10.1016/j.atmosenv.2019.05.004
- Exploring the effect of waterbodies coupled with other environmental parameters to model PM2.5 over Delhi-NCT in northwest India B. Gayen et al. 10.1016/j.apr.2022.101614
- Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia B. Chen et al. 10.1007/s11869-012-0192-5
- Assessment of Aerosol Mechanisms and Aerosol Meteorology Feedback over an Urban Airshed in India Using a Chemical Transport Model M. Gupta & M. Mohan 10.3390/atmos12111417
- Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data Y. Song et al. 10.1371/journal.pone.0142149
- Superior PM2.5 Estimation by Integrating Aerosol Fine Mode Data from the Himawari-8 Satellite in Deep and Classical Machine Learning Models Z. Zang et al. 10.3390/rs13142779
- A Comprehensive Review of a Decade of Field PV Soiling Assessment in QEERI’s Outdoor Test Facility in Qatar: Learned Lessons and Recommendations B. Aïssa et al. 10.3390/en16135224
- Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area L. Ferrero et al. 10.5194/acp-10-3915-2010
- Impact of Fine-Mode Fraction on the Relationship Between MODIS AOD and Ground-Based Particulate Matter G. Wei et al. 10.1007/s12524-021-01461-z
- Long-term trends in air quality in major cities in the UK and India: a view from space K. Vohra et al. 10.5194/acp-21-6275-2021
- Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS H. Chang et al. 10.1007/s10661-019-7421-4
- How well do satellite AOD observations represent the spatial and temporal variability of PM 2.5 concentration for the United States? J. Li et al. 10.1016/j.atmosenv.2014.12.010
- Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States H. Lee et al. 10.1021/acs.est.6b01438
- Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign G. Roelofs et al. 10.5194/acp-10-7709-2010
- New approach to monitor transboundary particulate pollution over Northeast Asia M. Park et al. 10.5194/acp-14-659-2014
- Long‐range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging N. Bègue et al. 10.1029/2012JD017611
- Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD W. You et al. 10.1007/s11356-015-6027-9
- Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count W. You et al. 10.1016/j.rse.2015.07.020
- Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations N. Benas et al. 10.1016/j.atmosenv.2013.07.012
- The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011 J. Xin et al. 10.1016/j.atmosres.2013.11.001
- Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: case study of Tehran, Iran S. Sotoudeheian & M. Arhami 10.1007/s40201-020-00509-5
- Physical and optical properties of atmospheric aerosols by in-situ and radiometric measurements M. Calvello et al. 10.5194/acp-10-2195-2010
- Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth L. Li et al. 10.1016/j.rse.2018.09.001
- PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India P. Gogikar et al. 10.1007/s12652-020-02457-2
- A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth Y. Chu et al. 10.3390/atmos7100129
- Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China X. Yan et al. 10.1016/j.atmosenv.2017.09.023
- Prediction of hourly ground-level PM 2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China X. Mao et al. 10.1016/j.apr.2017.04.002
- Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 C. Lin et al. 10.1016/j.rse.2014.09.015
- Improving the Accuracy of Daily Satellite-Derived Ground-Level Fine Aerosol Concentration Estimates for North America A. van Donkelaar et al. 10.1021/es3025319
- Air quality in the Galapagos Islands: A baseline view from remote sensing and in situ measurements M. Cazorla & E. Herrera 10.1002/met.1878
- Differences in fine particle chemical composition on clear and cloudy days A. Christiansen et al. 10.5194/acp-20-11607-2020
- Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data A. Beloconi et al. 10.1016/j.rse.2015.10.017
- Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments L. Di Antonio et al. 10.5194/acp-23-12455-2023
- Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations H. Lee et al. 10.1016/j.envres.2012.06.011
- Monitoring and Forecasting Air Pollution Levels by Exploiting Satellite, Ground-Based, and Synoptic Data, Elaborated with Regression Models S. Michaelides et al. 10.1155/2017/2954010
- Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the Metropolitan Area of São Paulo A. Damascena et al. 10.1016/j.atmosenv.2020.117949
- A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China W. Song et al. 10.1016/j.rse.2014.08.008
- Assessment of African desert dust episodes over the southwest Spain at sea level using in situ aerosol optical and microphysical properties M. Sorribas et al. 10.3402/tellusb.v67.27482
- Temporal and spatial trends in aerosols near the English Channel – An air quality success story? M. Yang et al. 10.1016/j.aeaoa.2020.100074
- Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models W. You et al. 10.1016/j.scitotenv.2014.11.024
- Temporal Variability and Relationship between Surface Concentration of PM2.5 and Aerosol Optical Depth According to Measurements in the Middle Urals A. Luzhetskaya et al. 10.1134/S1024856023010098
- Review of retrieval of aerosol optical depth to estimate particle concentration and its challenges based on spatiotemporal relationships by various spectroradiometer models C. Samuel et al. 10.1002/gj.4780
- First TROPOMI Retrieval of Aerosol Effective Height Using O₄ Absorption Band at 477 nm and Aerosol Classification W. Choi et al. 10.1109/TGRS.2020.3044050
- Assessment of the clear-sky bias issue using continuous PM 10 data from two AERONET sites in Korea Y. Choi & Y. Ghim 10.1016/j.jes.2016.02.020
- Impact assessment of meteorological and environmental parameters on PM2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran) F. Hajiloo et al. 10.1007/s11356-018-1277-y
- Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation Y. Zhang & Z. Li 10.1016/j.rse.2015.02.005
- Overview and Applications of the New York State Mesonet Profiler Network B. Shrestha et al. 10.1175/JAMC-D-21-0104.1
- Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data Y. Charabi & A. Gastli 10.1016/j.renene.2011.12.005
- Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017 R. Xue et al. 10.1016/j.jclepro.2020.120563
3 citations as recorded by crossref.
- Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010 A. van Donkelaar et al. 10.1016/j.atmosenv.2011.07.068
- Optimal temporal scale for the correlation of AOD and ground measurements of PM2.5 in a real-time air quality estimation system H. Li et al. 10.1016/j.atmosenv.2009.06.004
- Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh A. Gupta et al. 10.1007/s42452-020-03829-1
Saved (final revised paper)
Saved (preprint)
Latest update: 23 Nov 2024
Altmetrics
Final-revised paper
Preprint