Articles | Volume 9, issue 9
11 May 2009
 | 11 May 2009

Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol

S. S. Brown, J. A. deGouw, C. Warneke, T. B. Ryerson, W. P. Dubé, E. Atlas, R. J. Weber, R. E. Peltier, J. A. Neuman, J. M. Roberts, A. Swanson, F. Flocke, S. A. McKeen, J. Brioude, R. Sommariva, M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara

Abstract. Isoprene is the largest single VOC emission to the atmosphere. Although it is primarily oxidized photochemically during daylight hours, late-day emissions that remain in the atmosphere at sunset undergo oxidation by NO3 in regionally polluted areas with large NOx levels. A recent aircraft study examined isoprene and its nocturnal oxidants in a series of night flights across the Northeast US, a region with large emissions of both isoprene and NOx. Substantial amounts of isoprene that were observed after dark were strongly anticorrelated with measured NO3 and were the most important factor determining the lifetime of this radical. The products of photochemical oxidation of isoprene, methyl vinyl ketone and methacrolein, were more uniformly distributed, and served as tracers for the presence of isoprene at sunset, prior to its oxidation by NO3. A determination of the mass of isoprene oxidized in darkness showed it to be a large fraction (>20%) of emitted isoprene. Organic nitrates produced from the NO3+isoprene reaction, though not directly measured, were estimated to account for 2–9% of total reactive nitrogen. The mass of isoprene oxidized by NO3 was comparable to and correlated with the organic aerosol loading for flights with relatively low organic aerosol background. The contribution of nocturnal isoprene oxidation to secondary organic aerosol was determined in the range 1–17%, and isoprene SOA mass derived from NO3 was calculated to exceed that due to OH by approximately 50%.

Final-revised paper