Articles | Volume 8, issue 3
Atmos. Chem. Phys., 8, 523–543, 2008
https://doi.org/10.5194/acp-8-523-2008
© Author(s) 2008. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Special issue: Urban Meteorology and Atmospheric Pollution (EMS-FUMAPEX)
06 Feb 2008
06 Feb 2008
Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description
A. Baklanov et al.
Viewed
Total article views: 2,496 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 24 Nov 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,079 | 1,322 | 95 | 2,496 | 100 | 53 |
- HTML: 1,079
- PDF: 1,322
- XML: 95
- Total: 2,496
- BibTeX: 100
- EndNote: 53
Total article views: 1,858 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 06 Feb 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
816 | 961 | 81 | 1,858 | 89 | 51 |
- HTML: 816
- PDF: 961
- XML: 81
- Total: 1,858
- BibTeX: 89
- EndNote: 51
Total article views: 638 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 24 Nov 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
263 | 361 | 14 | 638 | 11 | 2 |
- HTML: 263
- PDF: 361
- XML: 14
- Total: 638
- BibTeX: 11
- EndNote: 2
Cited
51 citations as recorded by crossref.
- A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction U. Pak et al. 10.1007/s11869-018-0585-1
- Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects Y. Zhang et al. 10.1016/j.atmosenv.2012.02.041
- Deep particulate matter forecasting model using correntropy-induced loss J. Kim & C. Lee 10.1007/s12206-021-0817-4
- Сontamination of urban soils with heavy metals in Moscow as affected by building development N. Kosheleva et al. 10.1016/j.scitotenv.2018.04.308
- DeepAirNet: Applying Recurrent Networks for Air Quality Prediction A. V et al. 10.1016/j.procs.2018.05.068
- ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution A. Baklanov et al. 10.5194/asr-2-41-2008
- Morphological Database of Paris for Atmospheric Modeling Purposes A. Tack et al. 10.1109/JSTARS.2012.2201134
- Chemical weather forecasting: a new concept of integrated modelling A. Baklanov 10.5194/asr-4-23-2010
- Estimation of urban sensible heat flux using a dense wireless network of observations D. Nadeau et al. 10.1007/s10652-009-9150-7
- Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities V. Garbero et al. 10.3390/atmos12020237
- UrbClim – A fast urban boundary layer climate model K. De Ridder et al. 10.1016/j.uclim.2015.01.001
- Large scale air pollution prediction with deep convolutional networks G. Huang et al. 10.1007/s11432-020-2951-1
- ВЛИЯНИЕ ЗАСТРОЙКИ НА ЗАГРЯЗНЕНИЕ ГОРОДСКИХ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ В ВОСТОЧНОЙ МОСКВЕ Н. Кошелева et al. 10.36535/0235-5019-2020-12-4
- A perspective on urban canopy layer modeling for weather, climate and air quality applications J. Ching 10.1016/j.uclim.2013.02.001
- Modeling the Surface Energy Budget during the Thawing Period of the 2006 Montreal Urban Snow Experiment S. Leroyer et al. 10.1175/2009JAMC2153.1
- Improving PM2.5 Forecasting and Emission Estimation Based on the Bayesian Optimization Method and the Coupled FLEXPART-WRF Model L. Guo et al. 10.3390/atmos9110428
- Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China U. Pak et al. 10.1016/j.scitotenv.2019.07.367
- Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city M. Varentsov et al. 10.5194/acp-18-17573-2018
- Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network Q. Wu & H. Lin 10.1016/j.scs.2019.101657
- High Resolution Urban Air Quality Modeling by Coupling CFD and Mesoscale Models: a Review R. Kadaverugu et al. 10.1007/s13143-019-00110-3
- Online coupled regional meteorology chemistry models in Europe: current status and prospects A. Baklanov et al. 10.5194/acp-14-317-2014
- Impact of surface variations on the momentum flux above the urban canopy G. Liu & J. Sun 10.1007/s00704-009-0219-5
- Megacities, air quality and climate A. Baklanov et al. 10.1016/j.atmosenv.2015.11.059
- Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017 V. Yushkov et al. 10.1134/S0001433819050128
- High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea M. Park et al. 10.5194/amt-10-1575-2017
- A Sensitivity Study of an Effective Aerodynamic Parameter Scheme in Simulating Land–Atmosphere Interaction for a Sea–Land Breeze Case Around the Bohai Gulf of China Z. Zhong et al. 10.1175/JHM-D-16-0184.1
- Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2) A. Baklanov et al. 10.5194/gmd-10-2971-2017
- An experimental study of atmospheric turbulence characteristics in an urban canyon A. Pashkin et al. 10.1088/1755-1315/386/1/012035
- On the Ensemble of Recurrent Neural Network for Air Pollution Forecasting: Issues and Challenges O. Surakhi et al. 10.25046/aj050265
- Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review G. Lobaccaro et al. 10.3390/su132212385
- Biomagnetic monitoring combined with support vector machine: a new opportunity for predicting particle-bound-heavy metals Q. Dai et al. 10.1038/s41598-020-65677-8
- Impact of Physics Parameterizations on High-Resolution Air Quality Simulations over the Paris Region L. Jiang et al. 10.3390/atmos11060618
- Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges K. Schlünzen et al. 10.1016/j.jweia.2011.01.009
- Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis Y. Chen et al. 10.1016/j.atmosenv.2013.04.002
- Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation X. Li et al. 10.1016/j.envpol.2017.08.114
- Air Quality Estimation Using Dendritic Neural Regression with Scale-Free Network-Based Differential Evolution Z. Song et al. 10.3390/atmos12121647
- Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model P. Saide et al. 10.1016/j.atmosenv.2011.02.001
- Influences of updated land-use datasets on WRF simulations for two Austrian regions I. Schicker et al. 10.1007/s00703-015-0416-y
- A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors Q. Wu & H. Lin 10.1016/j.scitotenv.2019.05.288
- Deep learning architecture for air quality predictions X. Li et al. 10.1007/s11356-016-7812-9
- Impact of surface variations on the momentum flux above the urban canopy G. Liu & J. Sun 10.1007/s00704-009-0219-5
- Urbanization influence on meteorological parameters of air pollution: Vilnius case study A. Mažeikis 10.5200/baltica.2013.26.06
- A perspective on urban canopy layer modeling for weather, climate and air quality applications J. Ching 10.1016/j.uclim.2013.02.001
- Modelling the impact of urbanisation on regional climate in the Greater London Area D. Grawe et al. 10.1002/joc.3589
- The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-Action 715 M. Piringer et al. 10.1007/s10546-007-9170-0
- Mapping urban climate zones and quantifying climate behaviors – An application on Toulouse urban area (France) T. Houet & G. Pigeon 10.1016/j.envpol.2010.12.027
- The influence of large convective eddies on the surface-layer turbulence S. Zilitinkevich et al. 10.1256/qj.05.79
- Evaluation of high-resolution forecasts with the non-hydrostaticnumerical weather prediction model Lokalmodell for urban air pollutionepisodes in Helsinki, Oslo and Valencia B. Fay & L. Neunhäuserer 10.5194/acp-6-2107-2006
- Towards urbanisation of the non-hydrostatic numerical weather prediction model Lokalmodell (LM) L. Neunhäuserer et al. 10.1007/s10546-007-9159-8
- Integrated systems for forecasting urban meteorology, air pollution and population exposure A. Baklanov et al. 10.5194/acp-7-855-2007
- Anthropogenic Meso-Meteorological Feedbacks: A Review of a Recent Research A. Ginzburg & P. Demchenko 10.1134/S0001433819060045
40 citations as recorded by crossref.
- A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction U. Pak et al. 10.1007/s11869-018-0585-1
- Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects Y. Zhang et al. 10.1016/j.atmosenv.2012.02.041
- Deep particulate matter forecasting model using correntropy-induced loss J. Kim & C. Lee 10.1007/s12206-021-0817-4
- Сontamination of urban soils with heavy metals in Moscow as affected by building development N. Kosheleva et al. 10.1016/j.scitotenv.2018.04.308
- DeepAirNet: Applying Recurrent Networks for Air Quality Prediction A. V et al. 10.1016/j.procs.2018.05.068
- ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution A. Baklanov et al. 10.5194/asr-2-41-2008
- Morphological Database of Paris for Atmospheric Modeling Purposes A. Tack et al. 10.1109/JSTARS.2012.2201134
- Chemical weather forecasting: a new concept of integrated modelling A. Baklanov 10.5194/asr-4-23-2010
- Estimation of urban sensible heat flux using a dense wireless network of observations D. Nadeau et al. 10.1007/s10652-009-9150-7
- Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities V. Garbero et al. 10.3390/atmos12020237
- UrbClim – A fast urban boundary layer climate model K. De Ridder et al. 10.1016/j.uclim.2015.01.001
- Large scale air pollution prediction with deep convolutional networks G. Huang et al. 10.1007/s11432-020-2951-1
- ВЛИЯНИЕ ЗАСТРОЙКИ НА ЗАГРЯЗНЕНИЕ ГОРОДСКИХ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ В ВОСТОЧНОЙ МОСКВЕ Н. Кошелева et al. 10.36535/0235-5019-2020-12-4
- A perspective on urban canopy layer modeling for weather, climate and air quality applications J. Ching 10.1016/j.uclim.2013.02.001
- Modeling the Surface Energy Budget during the Thawing Period of the 2006 Montreal Urban Snow Experiment S. Leroyer et al. 10.1175/2009JAMC2153.1
- Improving PM2.5 Forecasting and Emission Estimation Based on the Bayesian Optimization Method and the Coupled FLEXPART-WRF Model L. Guo et al. 10.3390/atmos9110428
- Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China U. Pak et al. 10.1016/j.scitotenv.2019.07.367
- Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city M. Varentsov et al. 10.5194/acp-18-17573-2018
- Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network Q. Wu & H. Lin 10.1016/j.scs.2019.101657
- High Resolution Urban Air Quality Modeling by Coupling CFD and Mesoscale Models: a Review R. Kadaverugu et al. 10.1007/s13143-019-00110-3
- Online coupled regional meteorology chemistry models in Europe: current status and prospects A. Baklanov et al. 10.5194/acp-14-317-2014
- Impact of surface variations on the momentum flux above the urban canopy G. Liu & J. Sun 10.1007/s00704-009-0219-5
- Megacities, air quality and climate A. Baklanov et al. 10.1016/j.atmosenv.2015.11.059
- Modeling an Urban Heat Island during Extreme Frost in Moscow in January 2017 V. Yushkov et al. 10.1134/S0001433819050128
- High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea M. Park et al. 10.5194/amt-10-1575-2017
- A Sensitivity Study of an Effective Aerodynamic Parameter Scheme in Simulating Land–Atmosphere Interaction for a Sea–Land Breeze Case Around the Bohai Gulf of China Z. Zhong et al. 10.1175/JHM-D-16-0184.1
- Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2) A. Baklanov et al. 10.5194/gmd-10-2971-2017
- An experimental study of atmospheric turbulence characteristics in an urban canyon A. Pashkin et al. 10.1088/1755-1315/386/1/012035
- On the Ensemble of Recurrent Neural Network for Air Pollution Forecasting: Issues and Challenges O. Surakhi et al. 10.25046/aj050265
- Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review G. Lobaccaro et al. 10.3390/su132212385
- Biomagnetic monitoring combined with support vector machine: a new opportunity for predicting particle-bound-heavy metals Q. Dai et al. 10.1038/s41598-020-65677-8
- Impact of Physics Parameterizations on High-Resolution Air Quality Simulations over the Paris Region L. Jiang et al. 10.3390/atmos11060618
- Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges K. Schlünzen et al. 10.1016/j.jweia.2011.01.009
- Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis Y. Chen et al. 10.1016/j.atmosenv.2013.04.002
- Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation X. Li et al. 10.1016/j.envpol.2017.08.114
- Air Quality Estimation Using Dendritic Neural Regression with Scale-Free Network-Based Differential Evolution Z. Song et al. 10.3390/atmos12121647
- Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model P. Saide et al. 10.1016/j.atmosenv.2011.02.001
- Influences of updated land-use datasets on WRF simulations for two Austrian regions I. Schicker et al. 10.1007/s00703-015-0416-y
- A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors Q. Wu & H. Lin 10.1016/j.scitotenv.2019.05.288
- Deep learning architecture for air quality predictions X. Li et al. 10.1007/s11356-016-7812-9
11 citations as recorded by crossref.
- Impact of surface variations on the momentum flux above the urban canopy G. Liu & J. Sun 10.1007/s00704-009-0219-5
- Urbanization influence on meteorological parameters of air pollution: Vilnius case study A. Mažeikis 10.5200/baltica.2013.26.06
- A perspective on urban canopy layer modeling for weather, climate and air quality applications J. Ching 10.1016/j.uclim.2013.02.001
- Modelling the impact of urbanisation on regional climate in the Greater London Area D. Grawe et al. 10.1002/joc.3589
- The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-Action 715 M. Piringer et al. 10.1007/s10546-007-9170-0
- Mapping urban climate zones and quantifying climate behaviors – An application on Toulouse urban area (France) T. Houet & G. Pigeon 10.1016/j.envpol.2010.12.027
- The influence of large convective eddies on the surface-layer turbulence S. Zilitinkevich et al. 10.1256/qj.05.79
- Evaluation of high-resolution forecasts with the non-hydrostaticnumerical weather prediction model Lokalmodell for urban air pollutionepisodes in Helsinki, Oslo and Valencia B. Fay & L. Neunhäuserer 10.5194/acp-6-2107-2006
- Towards urbanisation of the non-hydrostatic numerical weather prediction model Lokalmodell (LM) L. Neunhäuserer et al. 10.1007/s10546-007-9159-8
- Integrated systems for forecasting urban meteorology, air pollution and population exposure A. Baklanov et al. 10.5194/acp-7-855-2007
- Anthropogenic Meso-Meteorological Feedbacks: A Review of a Recent Research A. Ginzburg & P. Demchenko 10.1134/S0001433819060045
Saved (final revised paper)
Saved (preprint)
Latest update: 09 Aug 2022
Altmetrics
Final-revised paper
Preprint