Articles | Volume 8, issue 9
Atmos. Chem. Phys., 8, 2569–2594, 2008

Special issue: Validation results for the Atmospheric Chemistry Experiment...

Atmos. Chem. Phys., 8, 2569–2594, 2008

  16 May 2008

16 May 2008

CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

C. Clerbaux1, M. George1, S. Turquety1, K. A. Walker3,2, B. Barret4, P. Bernath5,2, C. Boone2, T. Borsdorff6, J. P. Cammas4, V. Catoire7, M. Coffey8, P.-F. Coheur9, M. Deeter8, M. De Mazière10, J. Drummond11, P. Duchatelet12, E. Dupuy2, R. de Zafra13, F. Eddounia1, D. P. Edwards8, L. Emmons8, B. Funke14, J. Gille8, D. W. T. Griffith15, J. Hannigan8, F. Hase16, M. Höpfner16, N. Jones15, A. Kagawa17, Y. Kasai18, I. Kramer16, E. Le Flochmoën4, N. J. Livesey19, M. López-Puertas14, M. Luo20, E. Mahieu12, D. Murtagh21, P. Nédélec4, A. Pazmino1, H. Pumphrey22, P. Ricaud4, C. P. Rinsland23, C. Robert7, M. Schneider16, C. Senten10, G. Stiller16, A. Strandberg21, K. Strong3, R. Sussmann6, V. Thouret4, J. Urban21, and A. Wiacek3 C. Clerbaux et al.
  • 1Université Paris 6, CNRS, Service d'Aéronomie/IPSL, Paris, France
  • 2Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, Canada
  • 3Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7, Canada
  • 4Laboratoire d'Aérologie UMR 5560, Observatoire Midi-Pyrénées, Toulouse, France
  • 5Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
  • 6Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen, Germany
  • 7Laboratoire de Physique et Chimie de l'Environnement, CNRS, Université d'Orléans, Orléans, France
  • 8National Center for Atmospheric Research, Boulder, CO, USA
  • 9Spectroscopie de l'atmosphère, Chimie Quantique et Photophysique, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium. P.-F. Coheur is Research associate with the FRS-F.N.R.S, Belgium
  • 10Belgian Institute for Space Aeronomy, Brussels, Belgium
  • 11Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
  • 12Université de Liège ULg, Institute of Astrophysics and Geophysics, Liège, Belgium
  • 13Department of Physics and Astronomy, State Univ. of New York at Stony Brook, USA
  • 14Instituto de Astrofísica, Andalucía (CSIC), Granada, Spain
  • 15Department of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
  • 16Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
  • 17Fujitsu FIP Corporation, Tokyo, Japan
  • 18National Institute of Information and Communications Technology, Tokyo, Japan
  • 19Microwave Atmospheric Science Team, Jet Propulsion Laboratory, CA, USA
  • 20Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
  • 21Chalmers University of Technology, Göteborg, Sweden
  • 22School of GeoSciences, Edinburgh, Scotland
  • 23NASA Langley Research Center, Hampton, Virginia, USA

Abstract. The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.

Final-revised paper