Articles | Volume 8, issue 2
https://doi.org/10.5194/acp-8-251-2008
© Author(s) 2008. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/acp-8-251-2008
© Author(s) 2008. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Simple measures of ozone depletion in the polar stratosphere
R. Müller
ICG-1, Forschungszentrum Jülich, 52425 Jülich, Germany
J.-U. Grooß
ICG-1, Forschungszentrum Jülich, 52425 Jülich, Germany
C. Lemmen
now at: Copernicus Instituut voor Duurzame Ontwikkeling en Innovatie, Universiteit Utrecht, 3584CS Utrecht, The Netherlands and Institut für Küstenforschung, GKSS-Forschungszentrum Geesthacht GmbH, 21502 Geesthacht, Germany
ICG-1, Forschungszentrum Jülich, 52425 Jülich, Germany
D. Heinze
ICG-1, Forschungszentrum Jülich, 52425 Jülich, Germany
M. Dameris
DLR, IPA, Oberpfaffenhofen, Germany
G. Bodeker
NIWA, Private Bag 50061, Omakau Central Otago, New Zealand
Viewed
Total article views: 3,945 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 06 Jul 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,054 | 1,739 | 152 | 3,945 | 155 | 102 |
- HTML: 2,054
- PDF: 1,739
- XML: 152
- Total: 3,945
- BibTeX: 155
- EndNote: 102
Total article views: 3,333 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 18 Jan 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,733 | 1,462 | 138 | 3,333 | 137 | 99 |
- HTML: 1,733
- PDF: 1,462
- XML: 138
- Total: 3,333
- BibTeX: 137
- EndNote: 99
Total article views: 612 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 06 Jul 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
321 | 277 | 14 | 612 | 18 | 3 |
- HTML: 321
- PDF: 277
- XML: 14
- Total: 612
- BibTeX: 18
- EndNote: 3
Cited
43 citations as recorded by crossref.
- Indicators of Antarctic ozone depletion: 1979 to 2019 G. Bodeker & S. Kremser 10.5194/acp-21-5289-2021
- Future Arctic ozone recovery: the importance of chemistry and dynamics E. Bednarz et al. 10.5194/acp-16-12159-2016
- The exceptional ozone depletion over the Arctic in January–March 2011 C. Varotsos et al. 10.1080/01431161.2011.597792
- On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry L. Frossard et al. 10.5194/acp-13-147-2013
- Comparative Spectral Analysis and Correlation Properties of Observed and Simulated Total Column Ozone Records V. Homonnai et al. 10.3390/atmos4020198
- Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II F. Khosrawi et al. 10.5194/acp-9-5759-2009
- A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations G. Bodeker et al. 10.5194/essd-5-31-2013
- Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour L. Thölix et al. 10.5194/acp-18-15047-2018
- Quantifying Arctic lower stratospheric ozone sources in winter and spring C. Pan et al. 10.1038/s41598-018-27045-5
- Chemical and dynamical impacts of stratospheric sudden warmings on Arctic ozone variability S. Strahan et al. 10.1002/2016JD025128
- A global total column ozone climate data record G. Bodeker et al. 10.5194/essd-13-3885-2021
- Validation of Version 1.3 Ozone Measured by the SOFIE Instrument S. Das et al. 10.1029/2022EA002649
- On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core Y. Cao et al. 10.5194/acp-22-13407-2022
- The Unprecedented Ozone Loss in the Arctic Winter and Spring of 2010/2011 and 2019/2020 D. Ardra et al. 10.1021/acsearthspacechem.1c00333
- A cautionary note on the use of EESC-based regression analysis for ozone trend studies J. Kuttippurath et al. 10.1002/2014GL062142
- The Unusual Stratospheric Arctic Winter 2019/20: Chemical Ozone Loss From Satellite Observations and TOMCAT Chemical Transport Model M. Weber et al. 10.1029/2020JD034386
- The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring Y. Zhang-Liu et al. 10.5194/acp-24-12557-2024
- On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes H. Rieder et al. 10.5194/acp-13-165-2013
- Chemistry‐climate model simulations of spring Antarctic ozone J. Austin et al. 10.1029/2009JD013577
- Early signatures of ozone trend reversal over the Antarctic A. Várai et al. 10.1002/2014EF000270
- Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements B. Hassler et al. 10.5194/acp-8-5403-2008
- Time-asymmetric fluctuations in the atmosphere: daily mean temperatures and total-column ozone P. Kiss & I. Jánosi 10.1098/rsta.2010.0265
- Planetary wave peculiarities in Antarctic ozone distribution during 1979–2008 A. Grytsai 10.1080/01431161.2010.541518
- The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations S. Strahan et al. 10.1002/jgrd.50181
- Spatial, temporal, and vertical variability of polar stratospheric ozone loss in the Arctic winters 2004/2005–2009/2010 J. Kuttippurath et al. 10.5194/acp-10-9915-2010
- Impact of a possible future global hydrogen economy on Arctic stratospheric ozone loss B. Vogel et al. 10.1039/c2ee03181g
- Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 J. Kuttippurath et al. 10.5194/acp-21-14019-2021
- Zonally asymmetric trends of winter total column ozone in the northern middle latitudes J. Zhang et al. 10.1007/s00382-018-4393-y
- Comment on “Resonant dissociative electron transfer of the presolvated electron to CCl4 in liquid: Direct observation and lifetime of the CCl4∗− transition state” [J. Chem. Phys. 128, 041102 (2008)] R. Müller 10.1063/1.2953723
- The relevance of reactions of the methyl peroxy radical (CH<sub>3</sub>O<sub>2</sub>) and methylhypochlorite (CH<sub>3</sub>OCl) for Antarctic chlorine activation and ozone loss A. Zafar et al. 10.1080/16000889.2018.1507391
- Does Cosmic-Ray-Induced Heterogeneous Chemistry Influence Stratospheric Polar Ozone Loss? R. Müller & J. Grooß 10.1103/PhysRevLett.103.228501
- Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere K. Stone et al. 10.5194/acp-16-2401-2016
- Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 A. Lecouffe et al. 10.5194/acp-22-4187-2022
- Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence L. Peres et al. 10.3390/rs16112017
- Revisiting ozone measurements as an indicator of tropical width S. Davis et al. 10.1186/s40645-018-0214-5
- The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI A. de Laat et al. 10.5194/acp-24-4511-2024
- Extreme ozone loss over the Northern Hemisphere high latitudes in the early 2011 J. Krzyścin 10.3402/tellusb.v64i0.17347
- Implications of Lagrangian transport for simulations with a coupled chemistry-climate model A. Stenke et al. 10.5194/acp-9-5489-2009
- The surface impacts of Arctic stratospheric ozone anomalies K. Smith & L. Polvani 10.1088/1748-9326/9/7/074015
- Trend and recovery of the total ozone column in South America and Antarctica R. Toro A. et al. 10.1007/s00382-017-3540-1
- Technical note: LIMS observations of lower stratospheric ozone in the southern polar springtime of 1978 E. Remsberg et al. 10.5194/acp-20-3663-2020
- Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change" R. Müller & J. Grooß 10.1142/S0217979214820013
- The ozone hole measurements at the Indian station Maitri in Antarctica J. Kuttippurath et al. 10.1016/j.polar.2021.100701
43 citations as recorded by crossref.
- Indicators of Antarctic ozone depletion: 1979 to 2019 G. Bodeker & S. Kremser 10.5194/acp-21-5289-2021
- Future Arctic ozone recovery: the importance of chemistry and dynamics E. Bednarz et al. 10.5194/acp-16-12159-2016
- The exceptional ozone depletion over the Arctic in January–March 2011 C. Varotsos et al. 10.1080/01431161.2011.597792
- On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry L. Frossard et al. 10.5194/acp-13-147-2013
- Comparative Spectral Analysis and Correlation Properties of Observed and Simulated Total Column Ozone Records V. Homonnai et al. 10.3390/atmos4020198
- Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II F. Khosrawi et al. 10.5194/acp-9-5759-2009
- A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations G. Bodeker et al. 10.5194/essd-5-31-2013
- Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour L. Thölix et al. 10.5194/acp-18-15047-2018
- Quantifying Arctic lower stratospheric ozone sources in winter and spring C. Pan et al. 10.1038/s41598-018-27045-5
- Chemical and dynamical impacts of stratospheric sudden warmings on Arctic ozone variability S. Strahan et al. 10.1002/2016JD025128
- A global total column ozone climate data record G. Bodeker et al. 10.5194/essd-13-3885-2021
- Validation of Version 1.3 Ozone Measured by the SOFIE Instrument S. Das et al. 10.1029/2022EA002649
- On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core Y. Cao et al. 10.5194/acp-22-13407-2022
- The Unprecedented Ozone Loss in the Arctic Winter and Spring of 2010/2011 and 2019/2020 D. Ardra et al. 10.1021/acsearthspacechem.1c00333
- A cautionary note on the use of EESC-based regression analysis for ozone trend studies J. Kuttippurath et al. 10.1002/2014GL062142
- The Unusual Stratospheric Arctic Winter 2019/20: Chemical Ozone Loss From Satellite Observations and TOMCAT Chemical Transport Model M. Weber et al. 10.1029/2020JD034386
- The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring Y. Zhang-Liu et al. 10.5194/acp-24-12557-2024
- On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes H. Rieder et al. 10.5194/acp-13-165-2013
- Chemistry‐climate model simulations of spring Antarctic ozone J. Austin et al. 10.1029/2009JD013577
- Early signatures of ozone trend reversal over the Antarctic A. Várai et al. 10.1002/2014EF000270
- Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements B. Hassler et al. 10.5194/acp-8-5403-2008
- Time-asymmetric fluctuations in the atmosphere: daily mean temperatures and total-column ozone P. Kiss & I. Jánosi 10.1098/rsta.2010.0265
- Planetary wave peculiarities in Antarctic ozone distribution during 1979–2008 A. Grytsai 10.1080/01431161.2010.541518
- The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations S. Strahan et al. 10.1002/jgrd.50181
- Spatial, temporal, and vertical variability of polar stratospheric ozone loss in the Arctic winters 2004/2005–2009/2010 J. Kuttippurath et al. 10.5194/acp-10-9915-2010
- Impact of a possible future global hydrogen economy on Arctic stratospheric ozone loss B. Vogel et al. 10.1039/c2ee03181g
- Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 J. Kuttippurath et al. 10.5194/acp-21-14019-2021
- Zonally asymmetric trends of winter total column ozone in the northern middle latitudes J. Zhang et al. 10.1007/s00382-018-4393-y
- Comment on “Resonant dissociative electron transfer of the presolvated electron to CCl4 in liquid: Direct observation and lifetime of the CCl4∗− transition state” [J. Chem. Phys. 128, 041102 (2008)] R. Müller 10.1063/1.2953723
- The relevance of reactions of the methyl peroxy radical (CH<sub>3</sub>O<sub>2</sub>) and methylhypochlorite (CH<sub>3</sub>OCl) for Antarctic chlorine activation and ozone loss A. Zafar et al. 10.1080/16000889.2018.1507391
- Does Cosmic-Ray-Induced Heterogeneous Chemistry Influence Stratospheric Polar Ozone Loss? R. Müller & J. Grooß 10.1103/PhysRevLett.103.228501
- Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere K. Stone et al. 10.5194/acp-16-2401-2016
- Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 A. Lecouffe et al. 10.5194/acp-22-4187-2022
- Observations, Remote Sensing, and Model Simulation to Analyze Southern Brazil Antarctic Ozone Hole Influence L. Peres et al. 10.3390/rs16112017
- Revisiting ozone measurements as an indicator of tropical width S. Davis et al. 10.1186/s40645-018-0214-5
- The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI A. de Laat et al. 10.5194/acp-24-4511-2024
- Extreme ozone loss over the Northern Hemisphere high latitudes in the early 2011 J. Krzyścin 10.3402/tellusb.v64i0.17347
- Implications of Lagrangian transport for simulations with a coupled chemistry-climate model A. Stenke et al. 10.5194/acp-9-5489-2009
- The surface impacts of Arctic stratospheric ozone anomalies K. Smith & L. Polvani 10.1088/1748-9326/9/7/074015
- Trend and recovery of the total ozone column in South America and Antarctica R. Toro A. et al. 10.1007/s00382-017-3540-1
- Technical note: LIMS observations of lower stratospheric ozone in the southern polar springtime of 1978 E. Remsberg et al. 10.5194/acp-20-3663-2020
- Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change" R. Müller & J. Grooß 10.1142/S0217979214820013
- The ozone hole measurements at the Indian station Maitri in Antarctica J. Kuttippurath et al. 10.1016/j.polar.2021.100701
Saved (preprint)
Discussed (final revised paper)
Latest update: 21 Jan 2025
Altmetrics
Final-revised paper
Preprint