Articles | Volume 8, issue 7
https://doi.org/10.5194/acp-8-1897-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-8-1897-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Chemical ozone loss in the Arctic winter 1991–1992
S. Tilmes
National Center for Atmospheric Research, Boulder, Colorado, USA
R. Müller
Institute for Stratospheric Research (ICG-1), Forschungszentrum Jülich, Germany
R. J. Salawitch
Jet Propulsion Laboratory, California Institute of Technology, California, USA
U. Schmidt
J.W. Goethe University Frankfurt, Germany
C. R. Webster
Jet Propulsion Laboratory, California Institute of Technology, California, USA
H. Oelhaf
IMK-ASF, Forschungszentrum Karlsruhe, Karlsruhe, Germany
C. C. Camy-Peyret
Universite Pierre et Marie Curie and CNRS, Ivry-sur-Seine, France
J. M. Russell III
Hampton University, Virginia 23668, USA
Viewed
Total article views: 2,717 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Jul 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,460 | 1,164 | 93 | 2,717 | 104 | 75 |
- HTML: 1,460
- PDF: 1,164
- XML: 93
- Total: 2,717
- BibTeX: 104
- EndNote: 75
Total article views: 2,139 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 31 Mar 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,223 | 831 | 85 | 2,139 | 102 | 72 |
- HTML: 1,223
- PDF: 831
- XML: 85
- Total: 2,139
- BibTeX: 102
- EndNote: 72
Total article views: 578 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Jul 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
237 | 333 | 8 | 578 | 2 | 3 |
- HTML: 237
- PDF: 333
- XML: 8
- Total: 578
- BibTeX: 2
- EndNote: 3
Cited
20 citations as recorded by crossref.
- Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations T. Lurton et al. 10.5194/acp-18-3223-2018
- Comment on “Resonant dissociative electron transfer of the presolvated electron to CCl4 in liquid: Direct observation and lifetime of the CCl4∗− transition state” [J. Chem. Phys. 128, 041102 (2008)] R. Müller 10.1063/1.2953723
- Chemistry‐climate model simulations of spring Antarctic ozone J. Austin et al. 10.1029/2009JD013577
- Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change" R. Müller & J. Grooß 10.1142/S0217979214820013
- Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere K. Drdla & R. Müller 10.5194/angeo-30-1055-2012
- Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex T. Wegner et al. 10.5194/acp-12-11095-2012
- Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering S. Tilmes et al. 10.5194/esd-11-579-2020
- The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring Y. Zhang-Liu et al. 10.5194/acp-24-12557-2024
- Comment on “Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002” by Giovanni Muscari et al. R. Müller & S. Tilmes 10.1029/2007JD009709
- Does Cosmic-Ray-Induced Heterogeneous Chemistry Influence Stratospheric Polar Ozone Loss? R. Müller & J. Grooß 10.1103/PhysRevLett.103.228501
- Effects of Different Stratospheric SO2 Injection Altitudes on Stratospheric Chemistry and Dynamics S. Tilmes et al. 10.1002/2017JD028146
- Early signatures of ozone trend reversal over the Antarctic A. Várai et al. 10.1002/2014EF000270
- Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario H. Kashimura et al. 10.5194/acp-17-3339-2017
- Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery S. Strahan et al. 10.1002/2014JD022295
- The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes S. Tilmes et al. 10.1126/science.1153966
- Trace gas evolution in the lowermost stratosphere from Aura Microwave Limb Sounder measurements M. Santee et al. 10.1029/2011JD015590
- 100 Years of Progress in Understanding the Stratosphere and Mesosphere M. Baldwin et al. 10.1175/AMSMONOGRAPHS-D-19-0003.1
- Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 J. Kuttippurath et al. 10.5194/acp-21-14019-2021
- Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model S. Tilmes et al. 10.1029/2006JD008334
- An overview of geoengineering of climate using stratospheric sulphate aerosols P. Rasch et al. 10.1098/rsta.2008.0131
18 citations as recorded by crossref.
- Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations T. Lurton et al. 10.5194/acp-18-3223-2018
- Comment on “Resonant dissociative electron transfer of the presolvated electron to CCl4 in liquid: Direct observation and lifetime of the CCl4∗− transition state” [J. Chem. Phys. 128, 041102 (2008)] R. Müller 10.1063/1.2953723
- Chemistry‐climate model simulations of spring Antarctic ozone J. Austin et al. 10.1029/2009JD013577
- Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change" R. Müller & J. Grooß 10.1142/S0217979214820013
- Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere K. Drdla & R. Müller 10.5194/angeo-30-1055-2012
- Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex T. Wegner et al. 10.5194/acp-12-11095-2012
- Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering S. Tilmes et al. 10.5194/esd-11-579-2020
- The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring Y. Zhang-Liu et al. 10.5194/acp-24-12557-2024
- Comment on “Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002” by Giovanni Muscari et al. R. Müller & S. Tilmes 10.1029/2007JD009709
- Does Cosmic-Ray-Induced Heterogeneous Chemistry Influence Stratospheric Polar Ozone Loss? R. Müller & J. Grooß 10.1103/PhysRevLett.103.228501
- Effects of Different Stratospheric SO2 Injection Altitudes on Stratospheric Chemistry and Dynamics S. Tilmes et al. 10.1002/2017JD028146
- Early signatures of ozone trend reversal over the Antarctic A. Várai et al. 10.1002/2014EF000270
- Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario H. Kashimura et al. 10.5194/acp-17-3339-2017
- Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery S. Strahan et al. 10.1002/2014JD022295
- The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes S. Tilmes et al. 10.1126/science.1153966
- Trace gas evolution in the lowermost stratosphere from Aura Microwave Limb Sounder measurements M. Santee et al. 10.1029/2011JD015590
- 100 Years of Progress in Understanding the Stratosphere and Mesosphere M. Baldwin et al. 10.1175/AMSMONOGRAPHS-D-19-0003.1
- Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 J. Kuttippurath et al. 10.5194/acp-21-14019-2021
2 citations as recorded by crossref.
Saved (preprint)
Latest update: 21 Nov 2024
Altmetrics
Final-revised paper
Preprint