Articles | Volume 5, issue 9
https://doi.org/10.5194/acp-5-2431-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/acp-5-2431-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
P. Bergamaschi
European Commission Joint Research Centre, Ispra, Italy
M. Krol
European Commission Joint Research Centre, Ispra, Italy
Institute for Marine and Atmospheric Research, Utrecht, Netherlands
F. Dentener
European Commission Joint Research Centre, Ispra, Italy
A. Vermeulen
Netherlands Energy Research Foundation (ECN), Petten, Netherlands
F. Meinhardt
Umweltbundesamt, Messstelle Schauinsland, Kirchzarten, Germany
R. Graul
Umweltbundesamt, Messstelle Schauinsland, Kirchzarten, Germany
M. Ramonet
Laboratoire des Sciences du Climat et de l’Environment (LSCE), Gif sur Yvette, France
W. Peters
NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO, USA
E. J. Dlugokencky
NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO, USA
Viewed
Total article views: 4,019 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 25 Feb 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,268 | 1,637 | 114 | 4,019 | 117 | 96 |
- HTML: 2,268
- PDF: 1,637
- XML: 114
- Total: 4,019
- BibTeX: 117
- EndNote: 96
Total article views: 3,421 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 21 Sep 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,964 | 1,353 | 104 | 3,421 | 108 | 94 |
- HTML: 1,964
- PDF: 1,353
- XML: 104
- Total: 3,421
- BibTeX: 108
- EndNote: 94
Total article views: 598 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 25 Feb 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
304 | 284 | 10 | 598 | 9 | 2 |
- HTML: 304
- PDF: 284
- XML: 10
- Total: 598
- BibTeX: 9
- EndNote: 2
Cited
86 citations as recorded by crossref.
- Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories E. Chan et al. 10.1021/acs.est.0c04117
- Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements J. Landgraf et al. 10.5194/amt-9-4955-2016
- Atmospheric observation-based estimation of fossil fuel CO2 emissions from regions of central and southern California X. Cui et al. 10.1016/j.scitotenv.2019.01.081
- Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model C. Song et al. 10.1007/s11707-013-0391-x
- Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory R. Hiller et al. 10.5194/bg-11-1941-2014
- Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories F. Wang et al. 10.3390/rs11212489
- An extended Kalman-filter for regional scale inverse emission estimation D. Brunner et al. 10.5194/acp-12-3455-2012
- Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM W. Riley et al. 10.5194/bg-8-1925-2011
- Towards better error statistics for atmospheric inversions of methane surface fluxes A. Berchet et al. 10.5194/acp-13-7115-2013
- Simulating CH<sub>4</sub> and CO<sub>2</sub> over South and East Asia using the zoomed chemistry transport model LMDz-INCA X. Lin et al. 10.5194/acp-18-9475-2018
- Carbon Crucible M. Marquis & P. Tans 10.1126/science.1156451
- Policy Update: Observing human CO2emissions K. Gurney 10.4155/cmt.11.28
- Constraining global methane emissions and uptake by ecosystems R. Spahni et al. 10.5194/bg-8-1643-2011
- Are national greenhouse gas emissions reports scientifically valid? R. SWART et al. 10.1080/14693062.2007.9685675
- Double‐counting challenges the accuracy of high‐latitude methane inventories B. Thornton et al. 10.1002/2016GL071772
- Atmospheric composition change: Ecosystems–Atmosphere interactions D. Fowler et al. 10.1016/j.atmosenv.2009.07.068
- A review of current issues in air pollution modeling and simulation B. Sportisse 10.1007/s10596-006-9036-4
- The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions A. de Meij et al. 10.5194/acp-6-4287-2006
- Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation R. Weiss & R. Prinn 10.1098/rsta.2011.0006
- Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere A. Ostler et al. 10.5194/amt-9-4843-2016
- Methane detection and quantification in the upstream oil and gas sector: the role of satellites in emissions detection, reconciling and reporting J. Cooper et al. 10.1039/D1EA00046B
- Methane. A review A. Van Amstel 10.1080/1943815X.2012.694892
- B-Spline Method for Spatio-Temporal Inverse Model H. Wang et al. 10.1007/s11424-022-1206-5
- Greenhouse Gas Emissions and Reduction Strategies of the European Union M. Balat 10.1080/15567240701759842
- Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations R. Locatelli et al. 10.5194/acp-15-9765-2015
- Methane budget estimates in Finland from the CarbonTracker Europe-CH<sub>4</sub> data assimilation system A. Tsuruta et al. 10.1080/16000889.2018.1565030
- Inverse modeling of European CH<sub>4</sub> emissions: sensitivity to the observational network M. Villani et al. 10.5194/acp-10-1249-2010
- Near-real-time CO2 fluxes from CarbonTracker Europe for high-resolution atmospheric modeling A. van der Woude et al. 10.5194/essd-15-579-2023
- Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania L. Veriankaitė et al. 10.1007/s10453-009-9142-6
- Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review F. O'Connor et al. 10.1029/2010RG000326
- Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition Q. Zhuang et al. 10.1002/gbc.20057
- Detecting changes in Arctic methane emissions: limitations of the inter-polar difference of atmospheric mole fractions O. Dimdore-Miles et al. 10.5194/acp-18-17895-2018
- Optical–feedback cavity–enhanced absorption: a compact spectrometer for real–time measurement of atmospheric methane D. Romanini et al. 10.1007/s00340-006-2177-2
- MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis K. Gerilowski et al. 10.5194/amt-4-215-2011
- Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling S. Henne et al. 10.5194/acp-16-3683-2016
- Contribution of anthropogenic and natural sources to atmospheric methane variability P. Bousquet et al. 10.1038/nature05132
- Reactive nitrogen in atmospheric emission inventories S. Reis et al. 10.5194/acp-9-7657-2009
- Inverse modeling analysis of soil dust sources over East Asia B. Ku & R. Park 10.1016/j.atmosenv.2011.06.078
- Atmospheric constraints on global emissions of methane from plants S. Houweling et al. 10.1029/2006GL026162
- A hybrid source apportionment model integrating measured data and air quality model results B. Schichtel et al. 10.1029/2005JD006238
- Inter-calibration of gamma dose rate detectors on the European scale U. Stöhlker et al. 10.1051/radiopro/20095140
- Error Budget of the MEthane Remote LIdar missioN and Its Impact on the Uncertainties of the Global Methane Budget P. Bousquet et al. 10.1029/2018JD028907
- Acute impact of agriculture on high‐affinity methanotrophic bacterial populations P. Maxfield et al. 10.1111/j.1462-2920.2008.01587.x
- Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane O. Schneising et al. 10.5194/acp-9-443-2009
- Data reduction for inverse modeling: an adaptive approach v1.0 X. Liu et al. 10.5194/gmd-14-4683-2021
- A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling M. Prank et al. 10.5194/acp-10-10849-2010
- A case study on the application of SCIAMACHY satellite methane measurements for regional studies: the Greater Area of the Eastern Mediterranean A. Georgoulias et al. 10.1080/01431161.2010.517791
- First ground-based FTIR observations of methane in the inner tropics over several years A. Petersen et al. 10.5194/acp-10-7231-2010
- Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach A. Manning et al. 10.1029/2010JD014763
- Estimating methane emissions in California's urban and rural regions using multitower observations S. Jeong et al. 10.1002/2016JD025404
- Objectified quantification of uncertainties in Bayesian atmospheric inversions A. Berchet et al. 10.5194/gmd-8-1525-2015
- Atmospheric inverse estimates of methane emissions from Central California C. Zhao et al. 10.1029/2008JD011671
- CarbonTracker-CH<sub>4</sub>: an assimilation system for estimating emissions of atmospheric methane L. Bruhwiler et al. 10.5194/acp-14-8269-2014
- Global atmospheric methane: budget, changes and dangers E. Dlugokencky et al. 10.1098/rsta.2010.0341
- A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity S. Naus et al. 10.5194/acp-21-4809-2021
- Four‐dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations J. Meirink et al. 10.1029/2007JD009740
- Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios T. van Leeuwen et al. 10.1002/jgrd.50478
- Source attribution of the changes in atmospheric methane for 2006–2008 P. Bousquet et al. 10.5194/acp-11-3689-2011
- Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion J. Meirink et al. 10.5194/acp-8-6341-2008
- Top-Down Versus Bottom-Up E. Nisbet & R. Weiss 10.1126/science.1189936
- Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals P. Bergamaschi et al. 10.1029/2009JD012287
- The challenge of estimating regional trace gas emissions from atmospheric observations A. Manning 10.1098/rsta.2010.0321
- Satellite Measurement of GHG Emissions: Prospects for Enhancing Transparency and Answerability under International Law T. Aganaba-Jeanty & A. Huggins 10.1017/S2047102519000104
- Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases S. Conley et al. 10.5194/amt-10-3345-2017
- On variational data assimilation for estimating the model initial conditions and emission fluxes for short-term forecasting of SOx concentrations J. Vira & M. Sofiev 10.1016/j.atmosenv.2011.09.066
- A pragmatic protocol for characterising errors in atmospheric inversions of methane emissions over Europe B. Szénási et al. 10.1080/16000889.2021.1914989
- Observation-based estimates of fossil fuel-derived CO<sub>2</sub> emissions in the Netherlands using Δ14C, CO and <sup>222</sup>Radon S. Van Der Laan et al. 10.1111/j.1600-0889.2010.00493.x
- Urban carbon accounting: An overview L. Yin et al. 10.1016/j.uclim.2022.101195
- FLEXINVERT: an atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid R. Thompson & A. Stohl 10.5194/gmd-7-2223-2014
- Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Z. Tan et al. 10.5194/acp-16-12649-2016
- Application of stable isotope analysis for improved understanding of the methane budget: comparison of TROICA measurements with TM3 model simulations O. Tarasova et al. 10.1007/s10874-010-9157-y
- A three-dimensional synthesis inversion of the molecular hydrogen cycle: Sources and sinks budget and implications for the soil uptake P. Bousquet et al. 10.1029/2010JD014599
- Evaluation of methane emissions from West Siberian wetlands based on inverse modeling H. Kim et al. 10.1088/1748-9326/6/3/035201
- A multitower measurement network estimate of California's methane emissions S. Jeong et al. 10.1002/jgrd.50854
- Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations P. Bergamaschi et al. 10.1029/2006JD007268
- Satellite observations of atmospheric methane and their value for quantifying methane emissions D. Jacob et al. 10.5194/acp-16-14371-2016
- Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources K. Wecht et al. 10.5194/acp-12-1823-2012
- Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 A. Agustí-Panareda et al. 10.5194/acp-23-3829-2023
- Tropospheric methane in northern Finland: seasonal variations, transport patterns and correlations with other trace gases T. AALTO et al. 10.1111/j.1600-0889.2007.00248.x
- Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling R. Locatelli et al. 10.5194/acp-13-9917-2013
- Methane variability measured across Russia during TROICA expeditions O. Tarasova et al. 10.1080/15693430500384713
- The carbon budget of the northern cryosphere region A. McGuire et al. 10.1016/j.cosust.2010.05.003
- Methane emissions as energy reservoir: Context, scope, causes and mitigation strategies X. Chai et al. 10.1016/j.pecs.2016.05.001
- Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004 C. Frankenberg et al. 10.1029/2005JD006235
- Modeling energy efficiency to improve air quality and health effects of China’s cement industry S. Zhang et al. 10.1016/j.apenergy.2016.10.030
- Sensitivity of the carbon cycle in the Arctic to climate change A. McGuire et al. 10.1890/08-2025.1
80 citations as recorded by crossref.
- Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories E. Chan et al. 10.1021/acs.est.0c04117
- Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements J. Landgraf et al. 10.5194/amt-9-4955-2016
- Atmospheric observation-based estimation of fossil fuel CO2 emissions from regions of central and southern California X. Cui et al. 10.1016/j.scitotenv.2019.01.081
- Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model C. Song et al. 10.1007/s11707-013-0391-x
- Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory R. Hiller et al. 10.5194/bg-11-1941-2014
- Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories F. Wang et al. 10.3390/rs11212489
- An extended Kalman-filter for regional scale inverse emission estimation D. Brunner et al. 10.5194/acp-12-3455-2012
- Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM W. Riley et al. 10.5194/bg-8-1925-2011
- Towards better error statistics for atmospheric inversions of methane surface fluxes A. Berchet et al. 10.5194/acp-13-7115-2013
- Simulating CH<sub>4</sub> and CO<sub>2</sub> over South and East Asia using the zoomed chemistry transport model LMDz-INCA X. Lin et al. 10.5194/acp-18-9475-2018
- Carbon Crucible M. Marquis & P. Tans 10.1126/science.1156451
- Policy Update: Observing human CO2emissions K. Gurney 10.4155/cmt.11.28
- Constraining global methane emissions and uptake by ecosystems R. Spahni et al. 10.5194/bg-8-1643-2011
- Are national greenhouse gas emissions reports scientifically valid? R. SWART et al. 10.1080/14693062.2007.9685675
- Double‐counting challenges the accuracy of high‐latitude methane inventories B. Thornton et al. 10.1002/2016GL071772
- Atmospheric composition change: Ecosystems–Atmosphere interactions D. Fowler et al. 10.1016/j.atmosenv.2009.07.068
- A review of current issues in air pollution modeling and simulation B. Sportisse 10.1007/s10596-006-9036-4
- The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions A. de Meij et al. 10.5194/acp-6-4287-2006
- Quantifying greenhouse-gas emissions from atmospheric measurements: a critical reality check for climate legislation R. Weiss & R. Prinn 10.1098/rsta.2011.0006
- Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere A. Ostler et al. 10.5194/amt-9-4843-2016
- Methane detection and quantification in the upstream oil and gas sector: the role of satellites in emissions detection, reconciling and reporting J. Cooper et al. 10.1039/D1EA00046B
- Methane. A review A. Van Amstel 10.1080/1943815X.2012.694892
- B-Spline Method for Spatio-Temporal Inverse Model H. Wang et al. 10.1007/s11424-022-1206-5
- Greenhouse Gas Emissions and Reduction Strategies of the European Union M. Balat 10.1080/15567240701759842
- Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations R. Locatelli et al. 10.5194/acp-15-9765-2015
- Methane budget estimates in Finland from the CarbonTracker Europe-CH<sub>4</sub> data assimilation system A. Tsuruta et al. 10.1080/16000889.2018.1565030
- Inverse modeling of European CH<sub>4</sub> emissions: sensitivity to the observational network M. Villani et al. 10.5194/acp-10-1249-2010
- Near-real-time CO2 fluxes from CarbonTracker Europe for high-resolution atmospheric modeling A. van der Woude et al. 10.5194/essd-15-579-2023
- Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania L. Veriankaitė et al. 10.1007/s10453-009-9142-6
- Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review F. O'Connor et al. 10.1029/2010RG000326
- Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition Q. Zhuang et al. 10.1002/gbc.20057
- Detecting changes in Arctic methane emissions: limitations of the inter-polar difference of atmospheric mole fractions O. Dimdore-Miles et al. 10.5194/acp-18-17895-2018
- Optical–feedback cavity–enhanced absorption: a compact spectrometer for real–time measurement of atmospheric methane D. Romanini et al. 10.1007/s00340-006-2177-2
- MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis K. Gerilowski et al. 10.5194/amt-4-215-2011
- Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling S. Henne et al. 10.5194/acp-16-3683-2016
- Contribution of anthropogenic and natural sources to atmospheric methane variability P. Bousquet et al. 10.1038/nature05132
- Reactive nitrogen in atmospheric emission inventories S. Reis et al. 10.5194/acp-9-7657-2009
- Inverse modeling analysis of soil dust sources over East Asia B. Ku & R. Park 10.1016/j.atmosenv.2011.06.078
- Atmospheric constraints on global emissions of methane from plants S. Houweling et al. 10.1029/2006GL026162
- A hybrid source apportionment model integrating measured data and air quality model results B. Schichtel et al. 10.1029/2005JD006238
- Inter-calibration of gamma dose rate detectors on the European scale U. Stöhlker et al. 10.1051/radiopro/20095140
- Error Budget of the MEthane Remote LIdar missioN and Its Impact on the Uncertainties of the Global Methane Budget P. Bousquet et al. 10.1029/2018JD028907
- Acute impact of agriculture on high‐affinity methanotrophic bacterial populations P. Maxfield et al. 10.1111/j.1462-2920.2008.01587.x
- Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane O. Schneising et al. 10.5194/acp-9-443-2009
- Data reduction for inverse modeling: an adaptive approach v1.0 X. Liu et al. 10.5194/gmd-14-4683-2021
- A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling M. Prank et al. 10.5194/acp-10-10849-2010
- A case study on the application of SCIAMACHY satellite methane measurements for regional studies: the Greater Area of the Eastern Mediterranean A. Georgoulias et al. 10.1080/01431161.2010.517791
- First ground-based FTIR observations of methane in the inner tropics over several years A. Petersen et al. 10.5194/acp-10-7231-2010
- Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach A. Manning et al. 10.1029/2010JD014763
- Estimating methane emissions in California's urban and rural regions using multitower observations S. Jeong et al. 10.1002/2016JD025404
- Objectified quantification of uncertainties in Bayesian atmospheric inversions A. Berchet et al. 10.5194/gmd-8-1525-2015
- Atmospheric inverse estimates of methane emissions from Central California C. Zhao et al. 10.1029/2008JD011671
- CarbonTracker-CH<sub>4</sub>: an assimilation system for estimating emissions of atmospheric methane L. Bruhwiler et al. 10.5194/acp-14-8269-2014
- Global atmospheric methane: budget, changes and dangers E. Dlugokencky et al. 10.1098/rsta.2010.0341
- A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity S. Naus et al. 10.5194/acp-21-4809-2021
- Four‐dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations J. Meirink et al. 10.1029/2007JD009740
- Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios T. van Leeuwen et al. 10.1002/jgrd.50478
- Source attribution of the changes in atmospheric methane for 2006–2008 P. Bousquet et al. 10.5194/acp-11-3689-2011
- Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion J. Meirink et al. 10.5194/acp-8-6341-2008
- Top-Down Versus Bottom-Up E. Nisbet & R. Weiss 10.1126/science.1189936
- Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals P. Bergamaschi et al. 10.1029/2009JD012287
- The challenge of estimating regional trace gas emissions from atmospheric observations A. Manning 10.1098/rsta.2010.0321
- Satellite Measurement of GHG Emissions: Prospects for Enhancing Transparency and Answerability under International Law T. Aganaba-Jeanty & A. Huggins 10.1017/S2047102519000104
- Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases S. Conley et al. 10.5194/amt-10-3345-2017
- On variational data assimilation for estimating the model initial conditions and emission fluxes for short-term forecasting of SOx concentrations J. Vira & M. Sofiev 10.1016/j.atmosenv.2011.09.066
- A pragmatic protocol for characterising errors in atmospheric inversions of methane emissions over Europe B. Szénási et al. 10.1080/16000889.2021.1914989
- Observation-based estimates of fossil fuel-derived CO<sub>2</sub> emissions in the Netherlands using Δ14C, CO and <sup>222</sup>Radon S. Van Der Laan et al. 10.1111/j.1600-0889.2010.00493.x
- Urban carbon accounting: An overview L. Yin et al. 10.1016/j.uclim.2022.101195
- FLEXINVERT: an atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid R. Thompson & A. Stohl 10.5194/gmd-7-2223-2014
- Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Z. Tan et al. 10.5194/acp-16-12649-2016
- Application of stable isotope analysis for improved understanding of the methane budget: comparison of TROICA measurements with TM3 model simulations O. Tarasova et al. 10.1007/s10874-010-9157-y
- A three-dimensional synthesis inversion of the molecular hydrogen cycle: Sources and sinks budget and implications for the soil uptake P. Bousquet et al. 10.1029/2010JD014599
- Evaluation of methane emissions from West Siberian wetlands based on inverse modeling H. Kim et al. 10.1088/1748-9326/6/3/035201
- A multitower measurement network estimate of California's methane emissions S. Jeong et al. 10.1002/jgrd.50854
- Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations P. Bergamaschi et al. 10.1029/2006JD007268
- Satellite observations of atmospheric methane and their value for quantifying methane emissions D. Jacob et al. 10.5194/acp-16-14371-2016
- Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources K. Wecht et al. 10.5194/acp-12-1823-2012
- Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 A. Agustí-Panareda et al. 10.5194/acp-23-3829-2023
- Tropospheric methane in northern Finland: seasonal variations, transport patterns and correlations with other trace gases T. AALTO et al. 10.1111/j.1600-0889.2007.00248.x
- Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling R. Locatelli et al. 10.5194/acp-13-9917-2013
6 citations as recorded by crossref.
- Methane variability measured across Russia during TROICA expeditions O. Tarasova et al. 10.1080/15693430500384713
- The carbon budget of the northern cryosphere region A. McGuire et al. 10.1016/j.cosust.2010.05.003
- Methane emissions as energy reservoir: Context, scope, causes and mitigation strategies X. Chai et al. 10.1016/j.pecs.2016.05.001
- Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004 C. Frankenberg et al. 10.1029/2005JD006235
- Modeling energy efficiency to improve air quality and health effects of China’s cement industry S. Zhang et al. 10.1016/j.apenergy.2016.10.030
- Sensitivity of the carbon cycle in the Arctic to climate change A. McGuire et al. 10.1890/08-2025.1
Saved (final revised paper)
Saved (preprint)
Latest update: 23 Nov 2024
Altmetrics
Final-revised paper
Preprint