Articles | Volume 5, issue 1
Atmos. Chem. Phys., 5, 131–138, 2005

Special issue: SAGE III Ozone loss and validation experiment II and the validation...

Atmos. Chem. Phys., 5, 131–138, 2005

  21 Jan 2005

21 Jan 2005

Vortex-averaged Arctic ozone depletion in the winter 2002/2003

T. Christensen1, B. M. Knudsen1, M. Streibel2, S. B. Andersen1, A. Benesova3, G. Braathen4, H. Claude5, J. Davies6, H. De Backer7, H. Dier8, V. Dorokhov9, M. Gerding10, M. Gil11, B. Henchoz12, H. Kelder13, R. Kivi14, E. Kyrö14, Z. Litynska15, D. Moore16, G. Peters8, P. Skrivankova3, R. Stübi12, T. Turunen14, G. Vaughan17, P. Viatte12, A. F. Vik4, P. von der Gathen2, and I. Zaitcev9 T. Christensen et al.
  • 1Danish Meteorological Institute, Copenhagen, Denmark
  • 2Alfred Wegener Institute for Polar and Marine Research,Potsdam, Germany
  • 3Czech Hydrometeorological Institute, Prague, Czech Republic
  • 4Norwegian Institute for Air Research, Kjeller, Norway
  • 5Deutscher Wetterdienst, Hohenpeißenberg, Germany
  • 6Environment Canada, Downsview, Ontario, Canadany
  • 7Royal Meteorological Institute, Brussels, Belgium
  • 8Deutscher Wetterdienst, Lindenberg, Germany
  • 9Central Aerological Observatory, Dolgoprudny, Moscow Region, Russia
  • 10Leibniz-Institue of Atmospheric Physics, Kühlungsborn, Germany
  • 11Instituto Nacional de Téchnica Aerospacial, Madrid, Spain
  • 12MeteoSwiss, Payerne, Switzerland
  • 13Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • 14Finnish Meteorological Institute, Sodankylä, Finland
  • 15IMWM, Centre of Aerology, Legionowo, Poland
  • 16UK Met Office, Exeter, UK
  • 17University of Wales, Aberystwyth, UK

Abstract. A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge), 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar.

Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4.

We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

Final-revised paper