Articles | Volume 5, issue 4
Atmos. Chem. Phys., 5, 1053–1123, 2005
Atmos. Chem. Phys., 5, 1053–1123, 2005
30 Mar 2005
30 Mar 2005

Organic aerosol and global climate modelling: a review

M. Kanakidou1, J. H. Seinfeld2, S. N. Pandis3, I. Barnes4, F. J. Dentener5, M. C. Facchini6, R. Van Dingenen5, B. Ervens7, A. Nenes8, C. J. Nielsen9, E. Swietlicki10, J. P. Putaud5, Y. Balkanski11, S. Fuzzi6, J. Horth5, G. K. Moortgat12, R. Winterhalter12, C. E. L. Myhre9, K. Tsigaridis1, E. Vignati5, E. G. Stephanou1, and J. Wilson5 M. Kanakidou et al.
  • 1Environmental Chemical Processes Laboratory, Dept. of Chemistry, University of Crete, 71409 Heraklion, Greece
  • 2California Institute of Technology, 210-41, 1200 E. California Blvd., Pasadena, CA 91125, USA
  • 3Dept. of Chemical Engineering, University of Patras, Patras, Greece
  • 4Bergische University Wuppertal, Physical Chemistry FB C, Gauss Str. 20, 42119 Wuppertal, Germany
  • 5Climate Change Unit, Institute for Environment and Sustainability, JRC, Ispra, Italy
  • 6Istituto di Scienze dell’Atmosfera e del Clima – CNR, Italy
  • 7Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado 80523, USA
  • 8Schools of Earth and Atmospheric Sciences and Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0340 Atlanta, USA
  • 9Dept. of Chemistry, University of Oslo, Oslo, Norway
  • 10Div. of Nuclear Physics, Dept. of Physics, Lund University, Lund, Sweden
  • 11LSCE, CNRS/CEA, Orme des Merisiers, 91198 Gif-sur-Yvette, France
  • 12Max Planck Institute for Chemistry, Atmospheric Chemistry Division, Mainz, Germany

Abstract. The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.

Final-revised paper