Articles | Volume 3, issue 5
Atmos. Chem. Phys., 3, 1293–1300, 2003

Special issue: Atmospheric chemistry in the Earth system: from regional pollution...

Atmos. Chem. Phys., 3, 1293–1300, 2003

  04 Sep 2003

04 Sep 2003

Sensitivity studies of the recent new data on O(1D) quantum yields in O3 Hartley band photolysis in the stratosphere

N. Taniguchi1, S. Hayashida1, K. Takahashi2, and Y. Matsumi2 N. Taniguchi et al.
  • 1Faculty of Science, Nara Women’s University, Kitauoya - Nishimachi, Nara, 630 - 8506, Japan
  • 2Solar - Terrestrial Environment Laboratory, Nagoya University, Honohara 3 - 13, Toyokawa, 442 - 8507, Japan

Abstract. The production yields of excited oxygen O(1D) atoms from the near ultraviolet O3 photolysis are essential quantities for atmospheric chemistry calculations because of its importance as major sources of hydroxyl (OH) radicals and nitric oxide (NO). Recently, new O(1D) quantum yields from O3 photolysis between 230 and 305 nm in the Hartley band region were reported, which are almost independent of the photolysis wavelength (0.88-0.93) and smaller than NASA/JPL-2000 recommendations (0.95 between 240 and 300 nm). In order to assess consequences of the new data of O(1D) quantum yields on the stratospheric chemistry, the changes in stratospheric chemical partitioning and O3 concentration are examined using a one-dimensional atmospheric model. Our steady state model simulations for 40° N in March indicate that the smaller O(1D) quantum yields result in increases of stratospheric O3 (up to ~2% in the upper stratosphere), which are attributed to the changes in HOx, NOx, and ClOx abundance and their catalyzed O3 loss rates.

Final-revised paper