Articles | Volume 26, issue 2
https://doi.org/10.5194/acp-26-1249-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-26-1249-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A survey of snow growth signatures from tropics to Antarctica using triple-frequency radar observations
Qinghui Li
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Beijing, China
Key Laboratory High Impact Weather (special), China Meteorological Administration, Changsha, China
Shandong Institute of Meteorological Sciences, Jinan, China
Xuejin Sun
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
Yun Zhang
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
Weitao Lyu
State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Beijing, China
CMA Key Laboratory of Lightning, Chinese Academy of Meteorological Sciences, Beijing, China
Zheng Ruan
State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Beijing, China
Liping Liu
State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Beijing, China
Aiming Liu
Shenzhen Meteorological Observatory, Shenzhen, China
Chunsheng Zhang
Shenzhen Meteorological Observatory, Shenzhen, China
Related authors
No articles found.
Dukun Chen, Weifeng Su, Shaojie Jiang, Honglong Yang, Chunsheng Zhang, Shutong Jiang, Dongyang Chang, Yuxin Liang, Hao Wang, Xin Yang, Tzung-May Fu, Zhenzhong Zeng, Lei Zhu, Huizhong Shen, Chen Wang, and Jianhuai Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-4752, https://doi.org/10.5194/egusphere-2025-4752, 2025
Short summary
Short summary
This research turns unmanned aerial vehicles (UAVs) into sensitive weather stations by measuring how wind pushes and tilts them in flight. This method accurately gauges wind speed and direction without extra sensors, providing a low-cost way to map complex wind patterns. The findings are vital for improving air quality forecasts, tracking pollution, and ensuring safe drone operations, supporting smarter environmental management.
Shuai Zhang, Haoran Li, Dmitri Moisseev, and Matti Leskinen
Atmos. Meas. Tech., 18, 4839–4855, https://doi.org/10.5194/amt-18-4839-2025, https://doi.org/10.5194/amt-18-4839-2025, 2025
Short summary
Short summary
The data quality of weather radar near coastlines can be affected by echoes from ships, and this interference is exacerbated when pulse compression technology is used. This study developed a hybrid ship clutter identification algorithm based on artificial intelligence and heuristic criteria, effectively mitigating the issue. The successful reproduction of ship tracks in the Gulf of Finland supports this conclusion.
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024, https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Short summary
Understanding lightning activity is important for meteorology and atmospheric chemistry. However, the occurrence of lightning activity in clouds is uncertain. In this study, we quantified the difference between isolated thunderstorms and non-thunderstorms. We showed that lightning activity was more likely to occur with more graupel volume and/or riming. A deeper ZDR column was associated with lightning occurrence. This information can aid in a deeper understanding of lighting physics.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024, https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Short summary
The turbulence in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) remains unclear. Here we elucidate the vertical profile of and temporal variation in the turbulence dissipation rate in the PBL over the TP based on a radar wind profiler (RWP) network. To the best of our knowledge, this is the first time that the turbulence profile over the whole TP has been revealed. Furthermore, the possible mechanisms of clouds acting on the PBL turbulence structure are investigated.
Haoran Li, Dmitri Moisseev, Yali Luo, Liping Liu, Zheng Ruan, Liman Cui, and Xinghua Bao
Hydrol. Earth Syst. Sci., 27, 1033–1046, https://doi.org/10.5194/hess-27-1033-2023, https://doi.org/10.5194/hess-27-1033-2023, 2023
Short summary
Short summary
A rainfall event that occurred at Zhengzhou on 20 July 2021 caused tremendous loss of life and property. This study compares different KDP estimation methods as well as the resulting QPE outcomes. The results show that the selection of the KDP estimation method has minimal impact on QPE, whereas the inadequate assumption of rain microphysics and unquantified vertical air motion may explain the underestimated 201.9 mm h−1 record.
Han Ding, Haoran Li, and Liping Liu
Atmos. Meas. Tech., 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022, https://doi.org/10.5194/amt-15-6181-2022, 2022
Short summary
Short summary
In this study, a framework for processing the Doppler spectra observations of a multi-mode pulse compression Ka–Ku cloud radar system is presented. We first proposed an approach to identify and remove the clutter signals in the Doppler spectrum. Then, we developed a new algorithm to remove the range sidelobe at the modes implementing the pulse compression technique. The radar observations from different modes were then merged using the shift-then-average method.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608, https://doi.org/10.5194/acp-21-13593-2021, https://doi.org/10.5194/acp-21-13593-2021, 2021
Short summary
Short summary
Kelvin–Helmholtz (K–H) clouds embedded in a stratiform precipitation event were uncovered via radar Doppler spectral analysis. Given the unprecedented detail of the observations, we show that multiple populations of secondary ice columns were generated in the pockets where larger cloud droplets are formed and not at some constant level within the cloud. Our results highlight that the K–H instability is favorable for liquid droplet growth and secondary ice formation.
Cited articles
Anagnostou, E. N., Morales, C. A., and Dinku, T.: The use of TRMM precipitation radar observations in determining ground radar calibration biases, Journal of Atmospheric and Oceanic Technology, 18, 616–628, 2001. a
Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis, Atmospheric Chemistry and Physics, 19, 5753–5769, https://doi.org/10.5194/acp-19-5753-2019, 2019. a
Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S., Lamer, K., Grecu, M., Lebsock, M., Watters, D., Mroz, K., Heymsfield, G., Li, L., and Furukawa, K.: Spaceborne cloud and precipitation radars: Status, challenges, and ways forward, Reviews of Geophysics, 58, e2019RG000686, https://doi.org/10.1029/2019RG000686, 2020. a
Bertrand, L., Kay, J. E., Haynes, J., and de Boer, G.: A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations, Earth System Science Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024, 2024. a
Blaylock, B. K., Horel, J. D., and Liston, S. T.: Cloud archiving and data mining of High-Resolution Rapid Refresh forecast model output, Computers & Geosciences, 109, 43–50, 2017. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather radar: principles and applications, Cambridge university press, https://doi.org/10.1016/S0169-8095(02)00024-8, 2001. a
Chase, R. J.: Improving active remote sensing retrievals of snowfall at microwave wavelengths: an emphasis on the global precipitation measurement mission’s dual-frequency precipitation radar, Ph.D. thesis, University of Illinois at Urbana-Champaign, https://doi.org/10.13016/M2J01X, 2021. a
Chase, R. J., Finlon, J. A., Borque, P., McFarquhar, G. M., Nesbitt, S. W., Tanelli, S., Sy, O. O., Durden, S. L., and Poellot, M. R.: Evaluation of Triple-Frequency Radar Retrieval of Snowfall Properties Using Coincident Airborne In Situ Observations During OLYMPEX, Geophysical Research Letters, 45, 5752–5760, 2018. a
Chellini, G., Gierens, R., and Kneifel, S.: Ice Aggregation in Low-Level Mixed-Phase Clouds at a High Arctic Site: Enhanced by Dendritic Growth and Absent Close to the Melting Level, Journal of Geophysical Research: Atmospheres, 127, e2022JD036860, https://doi.org/10.1029/2022JD036860, 2022. a, b
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M., Eidhammer, T., and Rogers, D.: Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proceedings of the National Academy of Sciences, 107, 11217–11222, 2010. a
Dias Neto, J., Kneifel, S., Ori, D., Trömel, S., Handwerker, J., Bohn, B., Hermes, N., Mühlbauer, K., Lenefer, M., and Simmer, C.: The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation, Earth System Science Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, 2019. a, b, c, d, e
Ding, H., Li, H., and Liu, L.: Improved spectral processing for a multi-mode pulse compression Ka–Ku-band cloud radar system, Atmospheric Measurement Techniques, 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022, 2022. a, b
Dunnavan, E. L., Carlin, J. T., Schvartzman, D., Ryzhkov, A. V., Bluestein, H., Emmerson, S., McFarquhar, G. M., Heymsfield, G. M., and Yorks, J.: High-Resolution Snowstorm Measurements and Retrievals Using Cross-Platform Multi-Frequency and Polarimetric Radars, Geophysical Research Letters, 50, e2023GL103692, https://doi.org/10.1029/2023GL103692, 2023. a
Falconi, M. T., von Lerber, A., Ori, D., Marzano, F. S., and Moisseev, D.: Snowfall retrieval at X, Ka and W bands: consistency of backscattering and microphysical properties using BAECC ground-based measurements, Atmospheric Measurement Techniques, 11, 3059–3079, https://doi.org/10.5194/amt-11-3059-2018, 2018. a
Field, P. R. and Heymsfield, A. J.: Importance of snow to global precipitation, Geophysical Research Letters, 42, 9512–9520, 2015. a
Fitch, K. E. and Garrett, T. J.: Graupel precipitating from thin Arctic clouds with liquid water paths less than 50 g m−2, Geophysical Research Letters, 49, e2021GL094075, https://doi.org/10.1029/2021GL094075, 2022. a
Gultepe, I., Isaac, G., Hudak, D., Nissen, R., and Strapp, J. W.: Dynamical and Microphysical Characteristics of Arctic Clouds during BASE, Journal of Climate, 13, 1225–1254, https://doi.org/10.1175/1520-0442(2000)013<1225:DAMCOA>2.0.CO;2, 2000. a
Heymsfield, A., Bansemer, A., Heymsfield, G., Noone, D., Grecu, M., and Toohey, D.: Relationship of multiwavelength radar measurements to ice microphysics from the IMPACTS field program, Journal of Applied Meteorology and Climatology, 62, 289–315, 2023. a
Heymsfield, A. J., Bansemer, A., and Twohy, C. H.: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence, Journal of the Atmospheric Sciences, 64, 1047–1067, 2007. a
Heymsfield, A. J., Schmitt, C. G., Chen, C. C. J., Bansemer, A. R., Gettelman, A., Field, P. R., and Liu, C.: Contributions of the liquid and ice phases to global surface precipitation: Observations and global climate modeling, Journal of the Atmospheric Sciences, 77, 2629–2648, 2020. a
Hines, K. M., Bromwich, D. H., Silber, I., Russell, L. M., and Bai, L.: Predicting Frigid Mixed-Phase Clouds for Pristine Coastal Antarctica, Journal of Geophysical Research: Atmospheres, 126, e2021JD035112, https://doi.org/0.1029/2021JD035112, 2021. a
Hogan, R. J., Illingworth, A. J., and Sauvageot, H.: Measuring crystal size in cirrus using 35-and 94 GHz radars, Journal of Atmospheric and Oceanic Technology, 17, 27–37, 2000. a
Hooper, J. and Kippax, A.: Radar echoes from meteorological precipitation, Proceedings of the IEE-Part I: General, 97, 89–95, 1950. a
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation measurement mission, Bulletin of the American meteorological Society, 95, 701–722, 2014. a
Houze Jr., R. A.: Stratiform precipitation in regions of convection: A meteorological paradox?, Bulletin of the American Meteorological Society, 78, 2179–2196, 1997. a
Illingworth, A. J., Barker, H. W., Beljaars, A. C. M., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J. N. S., Delanoë, J. M. E., Doménech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blazquez, A., Wandinger, U., Wehr, T., and van Zadelhoff, G. J.: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation, Bulletin of the American Meteorological Society, 96, 1311–1332, 2015. a
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of ice nucleating particles, Meteorological Monographs, 58, 1–1, 2017. a
Karrer, M., Seifert, A., Ori, D., and Kneifel, S.: Improving the representation of aggregation in a two-moment microphysical scheme with statistics of multi-frequency Doppler radar observations, Atmospheric Chemistry and Physics, 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021, 2021. a, b
Kneifel, S., Kulie, M., and Bennartz, R.: A triple-frequency approach to retrieve microphysical snowfall parameters, Journal of Geophysical Research: Atmospheres, 116, https://doi.org/10.1029/2010JD015430, 2011. a
Kulie, M. S., Hiley, M. J., Bennartz, R., Kneifel, S., and Tanelli, S.: Triple-frequency radar reflectivity signatures of snow: Observations and comparisons with theoretical ice particle scattering models, Journal of Applied Meteorology and Climatology, 53, 1080–1098, 2014. a
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The tropical rainfall measuring mission (TRMM) sensor package, Journal of Atmospheric and Oceanic Technology, 15, 809–817, 1998. a
Leinonen, J., Kneifel, S., Moisseev, D., Tyynelä, J., Tanelli, S., and Nousiainen, T.: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall, Journal of Geophysical Research: Atmospheres, 117, https://doi.org/10.1029/2012JD017680, 2012. a, b
Leinonen, J., Lebsock, M. D., Tanelli, S., Suzuki, K., Yashiro, H., and Miyamoto, Y.: Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model, Atmospheric Measurement Techniques, 8, 3493–3517, https://doi.org/10.5194/amt-8-3493-2015, 2015. a, b, c
Leinonen, J., Lebsock, M. D., Tanelli, S., Sy, O. O., Dolan, B., Chase, R. J., Finlon, J. A., von Lerber, A., and Moisseev, D.: Retrieval of snowflake microphysical properties from multifrequency radar observations, Atmospheric Measurement Techniques, 11, 5471–5488, https://doi.org/10.5194/amt-11-5471-2018, 2018. a
Li, H. and Moisseev, D.: Melting layer attenuation at Ka- and W-bands as derived from multi-frequency radar Doppler spectra observations, Journal of Geophysical Research: Atmospheres, 124, https://doi.org/10.1029/2019JD030316, 2019. a, b, c
Li, H. and Moisseev, D.: Two layers of melting ice particles within a single radar bright band: Interpretation and implications, Geophysical Research Letters, 47, e2020GL087499, https://doi.org/10.1029/2020GL087499, 2020. a, b
Li, H., Tiira, J., von Lerber, A., and Moisseev, D.: Towards the connection between snow microphysics and melting layer: insights from multifrequency and dual-polarization radar observations during BAECC, Atmospheric Chemistry and Physics, 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020, 2020. a, b, c, d
Li, H., Möhler, O., Petäjä, T., and Moisseev, D.: Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: environmental conditions and the relevance to secondary ice production, Atmospheric Chemistry and Physics, 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, 2021. a
Li, H., Moisseev, D., Luo, Y., Liu, L., Ruan, Z., Cui, L., and Bao, X.: Assessing specific differential phase (KDP)-based quantitative precipitation estimation for the record- breaking rainfall over Zhengzhou city on 20 July 2021, Hydrology and Earth System Sciences, 27, 1033–1046, https://doi.org/10.5194/hess-27-1033-2023, 2023a. a
Li, Q.: A survey of snow growth signatures from tropics to Antarctica using triple-frequency radar observations, Zenodo [data set], https://doi.org/10.5281/zenodo.14575727, 2024. a
Li, Q., Li, H., Sun, X., Ruan, Z., Liu, L., Gao, W., Liao, C., and Ding, H.: On the quantification of thermodynamic phases of raining clouds: Insights from multi-year CloudSat and ground-based radar observations over Longmen, Southern China, Journal of Geophysical Research: Atmospheres, 130, e2024JD041824, https://doi.org/10.1029/2024JD041824, 2025. a
Li, Z., Wen, Y., Liao, L., Wolff, D., Meneghini, R., and Schuur, T.: Joint collaboration on comparing NOAA’s ground-based weather radar and NASA–JAXA’s spaceborne radar, Bulletin of the American Meteorological Society, 104, E1435–E1451, 2023b. a
Liebe, H. J.: An updated model for millimeter wave propagation in moist air, Radio Science, 20, 1069–1089, 1985. a
Lin, Y., Donner, L. J., and Colle, B. A.: Parameterization of riming intensity and its impact on ice fall speed using ARM data, Monthly Weather Review, 139, 1036–1047, 2011. a
Liu, B., Li, H., Liu, L., Shang, J., Yin, H., and Kuo, K.-S.: Sea Surface and Snowflakes as Natural Targets Connecting FY-3G and GPM-CO Dual-Frequency Radars, Geophysical Research Letters, 51, e2024GL110878, https://doi.org/10.1029/2024GL110878, 2024. a, b, c, d
Liu, B., Li, H., Liu, L., Shang, J., Kuo, K.-S., Lu, C., Yuan, M., and Jiang, B.: On the detection sensitivities of dual-frequency radars onboard FY-3G and GPM-CO, Atmospheric Research, 107935, https://doi.org/10.1016/j.atmosres.2025.107935, 2025. a, b
Liu, Y., Yau, M.-K., Shima, S.-i., Lu, C., and Chen, S.: Parameterization and explicit modeling of cloud microphysics: Approaches, challenges, and future directions, Advances in Atmospheric Sciences, 40, 747–790, 2023. a
Löhnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M., Barrera-Verdejo, M., Hirsikko, A., Bohn, B., Knaps, A., O’Connor, E., Simmer, C., Wahner, A., and Crewell, S.: JOYCE: Jülich observatory for cloud evolution, Bulletin of the American Meteorological Society, 96, 1157–1174, 2015. a
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A., Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A., Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H., Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and Vogelmann, A. M.: AWARE: The atmospheric radiation measurement (ARM) west Antarctic radiation experiment, Bulletin of the American Meteorological Society, 101, E1069–E1091, 2020. a, b
Maherndl, N., Moser, M., Lucke, J., Mech, M., Risse, N., Schirmacher, I., and Maahn, M.: Quantifying riming from airborne data during the HALO-(AC)3 campaign, Atmospheric Measurement Techniques, 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024, 2024. a
Masaki, T., Iguchi, T., Kanemaru, K., Furukawa, K., Yoshida, N., Kubota, T., and Oki, R.: Calibration of the dual-frequency precipitation radar onboard the Global Precipitation Measurement Core Observatory, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16, 2020. a
Mason, S. L., Hogan, R. J., Westbrook, C. D., Kneifel, S., Moisseev, D., and von Terzi, L.: The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow, Atmospheric Measurement Techniques, 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, 2019. a, b
Matrosov, S.: Possibilities of cirrus particle sizing from dual-frequency radar measurements, Journal of Geophysical Research: Atmospheres, 98, 20675–20683, 1993. a
Matrosov, S. Y.: A dual-wavelength radar method to measure snowfall rate, Journal of Applied Meteorology, 37, 1510–1521, 1998. a
Maynard, R. H.: Radar and weather, Journal of Atmospheric Sciences, 2, 214–226, 1945. a
McMurdie, L. A., Heymsfield, G., Yorks, J. E., and Braun, S. A.: Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Collection, NASA EOSDIS Global Hydrometeorology Resource Center Distributed Active Archive Center [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/IMPACTS/DATA101, 2019. a
McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G., Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., Novak, D. R., Lang, T. J., Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian, M. R., Greybush, S. J., Heymsfield, A. J., Finlon, J. A., McDonald, V. L., and Nicholls, S.: Chasing snowstorms: The investigation of microphysics and precipitation for Atlantic coast-threatening snowstorms (IMPACTS) campaign, Bulletin of the American Meteorological Society, 103, E1243–E1269, 2022. a, b
Moisseev, D., von Lerber, A., and Tiira, J.: Quantifying the effect of riming on snowfall using ground-based observations, Journal of Geophysical Research: Atmospheres, 122, 4019–4037, 2017. a
Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nature Geoscience, 5, 11–17, 2012. a
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J., Prat, O. P., Reimel, K. J., Shima, S.-I., van Diedenhoven, B., and Xue, L.: Confronting the challenge of modeling cloud and precipitation microphysics, Journal of advances in modeling earth systems, 12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020. a
Mosimann, L.: An improved method for determining the degree of snow crystal riming by vertical Doppler radar, Atmospheric research, 37, 305–323, 1995. a
Mroz, K., Battaglia, A., Nguyen, C., Heymsfield, A., Protat, A., and Wolde, M.: Triple-frequency radar retrieval of microphysical properties of snow, Atmospheric Measurement Techniques, 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, 2021. a
Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals, Geophysical Research Letters, 42, 6502–6509, 2015. a
Nguyen, C. M., Wolde, M., Battaglia, A., Nichman, L., Bliankinshtein, N., Haimov, S., Bala, K., and Schuettemeyer, D.: Coincident in situ and triple-frequency radar airborne observations in the Arctic, Atmospheric Measurement Techniques, 15, 775–795, https://doi.org/10.5194/amt-15-775-2022, 2022. a
Pang, S., Ruan, Z., Yang, L., Liu, X., Huo, Z., Li, F., and Ge, R.: Estimating raindrop size distributions and vertical air motions with spectral difference using vertically pointing radar, Journal of Atmospheric and Oceanic Technology, 38, 1697–1713, 2021. a
Asmi, E., Brus, D., Bäck, J., Chandrasekar, V., Engelmann, R., Hakola, H., Hickmon, N., Komppula, M., Krüger, O., Kuang, C., Laurila, T., Levula, J., Manninen, A. J., Massoli, P., Moisseev, D., Mona, L., Nicoll, K., O’Connor, E. J., Petersen, W., and Petäjä, T.: BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate, Bulletin of the American Meteorological Society, 97, 1909–1928, 2016. a, b
Protat, A., Rauniyar, S., Delanoë, J., Fontaine, E., and Schwarzenboeck, A.: W-band (95 GHz) radar attenuation in tropical stratiform ice anvils, Journal of Atmospheric and Oceanic Technology, 36, 1463–1476, 2019. a
Ruan, Z., Ming, H., Ma, J., Ge, R., and Bian, L.: Analysis of the microphysical properties of a stratiform rain event using an L-Band profiler radar, Journal of Meteorological Research, 28, 268–280, 2014. a
Sassen, K. and Wang, Z.: Classifying clouds around the globe with the CloudSat radar: 1-year of results, Geophysical Research Letters, 35, https://doi.org/10.1029/2007GL032591, 2008. a, b
Schumacher, C. and Houze Jr., R. A.: Stratiform rain in the tropics as seen by the TRMM precipitation radar, Journal of Climate, 16, 1739–1756, 2003. a
Seifert, P., Ansmann, A., Mattis, I., Althausen, D., Tesche, M., Wandinger, U., Muller, D., and Pérez, C.: Lidar-based profiling of the tropospheric cloud-ice distribution to study the seeder-feeder mechanism and the role of Saharan dust as ice nuclei, in: Proceedings of the 8th International Symposium on Tropospheric Profiling, edited by: Apituley, A., Russchenberg, HWJ, and Monna, WAA, Delft, the Netherlands, ISBN 978-90-6960-233-2, 2009. a
Song, J. I., Yum, S. S., Park, S.-H., Kim, K.-H., Park, K.-J., and Joo, S.-W.: Climatology of melting layer heights estimated from cloud radar observations at various locations, Journal of Geophysical Research: Atmospheres, 126, e2021JD034816, https://doi.org/10.1029/2021JD034816, 2021. a
Stein, T. H., Westbrook, C. D., and Nicol, J.: Fractal geometry of aggregate snowflakes revealed by triple-wavelength radar measurements, Geophysical Research Letters, 42, 176–183, 2015. a
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C.: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation, Bulletin of the American Meteorological Society, 83, 1771–1790, 2002. a
Tiira, J., Moisseev, D. N., von Lerber, A., Ori, D., Tokay, A., Bliven, L. F., and Petersen, W.: Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland, Atmospheric Measurement Techniques, 9, 4825–4841, https://doi.org/10.5194/amt-9-4825-2016, 2016. a, b
Tridon, F., Battaglia, A., Chase, R., Turk, F. J., Leinonen, J., Kneifel, S., Mroz, K., Finlon, J., Bansemer, A., Tanelli, S., Heymsfield, A., and Nesbitt, S.: The microphysics of stratiform precipitation during OLYMPEX: Compatibility between triple-frequency radar and airborne in situ observations, Journal of Geophysical Research: Atmospheres, 124, 8764–8792, 2019. a
Tridon, F., Battaglia, A., and Kneifel, S.: Estimating total attenuation using Rayleigh targets at cloud top: applications in multilayer and mixed-phase clouds observed by ground-based multifrequency radars, Atmospheric Measurement Techniques, 13, 5065–5085, https://doi.org/10.5194/amt-13-5065-2020, 2020. a, b
Tridon, F., Silber, I., Battaglia, A., Kneifel, S., Fridlind, A., Kalogeras, P., and Dhillon, R.: Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica, Atmospheric Chemistry and Physics, 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, 2022. a, b, c
Turk, F. J., Ringerud, S. E., Camplani, A., Casella, D., Chase, R. J., Ebtehaj, A., Gong, J., Kulie, M., Liu, G., Milani, L., Panegrossi, G., Padullés, R., Rysman, J.-F., Sanò, P., Vahedizade, S., and Wood, N. B.: Applications of a CloudSat-TRMM and CloudSat-GPM satellite coincidence dataset, Remote Sensing, 13, 2264, https://doi.org/10.3390/rs13122264, 2021. a
Verlinde, J., Rambukkange, M. P., Clothiaux, E. E., McFarquhar, G. M., and Eloranta, E. W.: Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra, Journal of Geophysical Research: Atmospheres, 118, 13–199, 2013. a
von Terzi, L.: TRIPEx-pol level-2 data, Zenodo [data set], https://doi.org/10.5281/zenodo.5025636, 2021. a
von Terzi, L., Dias Neto, J., Ori, D., Myagkov, A., and Kneifel, S.: Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations, Atmospheric Chemistry and Physics, 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, 2022. a, b, c
Widener, K. and Johnson, K.: W-band arm cloud radar (wacr) handbook, The US Department of Energy, Washington DC, USA, https://doi.org/10.2172/1019541, 2006. a
Yu, W., Tao, H., Jingchao, G., Kai, J., Rui, L., Wencheng, S., and Guosheng, L.: Simulation of the capability of Ku, Ka and W tri-frequency satellite-borne radar measuring the three-dimensional structure of cloud and precipitation, Chinese Science Bulletin, 64, 430–443, 2019. a
Zhang, P., Gu, S., Chen, L., Shang, J., Lin, M., Zhu, A., Yin, H., Wu, Q., Shou, Y., Sun, F., Xu, H., Yang, G., Wang, H., Li, L., Zhang, H. W., Chen, S., and Lu, N.: FY-3G satellite instruments and precipitation products: first report of China’s Fengyun rainfall mission in-orbit, Journal of Remote Sensing, 3, 0097, https://doi.org/10.34133/remotesensing.0097, 2023. a
Zhang, Y., Zheng, H., Zhang, L., Huang, Y., Liu, X., and Wu, Z.: Assessing the effect of riming on snow microphysics: The first observational study in East China, Journal of Geophysical Research: Atmospheres, 126, e2020JD033763, https://doi.org/10.1029/2020JD033763, 2021. a
Zhang, Y., Ouyang, X., Wang, M., Rosenfeld, D., Zhao, D., and Wu, X.: Evaluating ice phase microphysics in the simulation of a snowstorm over Northern China, Journal of Geophysical Research: Atmospheres, 129, e2023JD040221, https://doi.org/10.1029/2023JD040221, 2024. a
Executive editor
The article combines Ku–Ka–W observations from field campaigns spanning the tropics to Antarctica to show temperature-dependent signatures that separate aggregation from riming. As a first cross-latitude synthesis of triple-frequency snow microphysics, the article may serve as a future reference for cloud/precipitation remote sensing and model evaluation.
The article combines Ku–Ka–W observations from field campaigns spanning the tropics to...
Short summary
Despite the increasing complexity of snow microphysics schemes employed in numerical models, whether the dominant snow microphysical process is reasonably identified remains an open question. This study using unprecedented triple-frequency radar observations for the first time unravels the key snow growth processes over diverse geographies. The unique cross-continental datasets from triple-frequency campaigns shed new insights for model evaluation and future satellite missions.
Despite the increasing complexity of snow microphysics schemes employed in numerical models,...
Altmetrics
Final-revised paper
Preprint