Articles | Volume 25, issue 16
https://doi.org/10.5194/acp-25-9183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-9183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantitative analysis of nighttime effects of radiation belt energetic electron precipitation on the D-region ionosphere during lower solar activity periods
Xuan Dong
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100190, China
Shufan Zhao
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100190, China
Li Liao
CORRESPONDING AUTHOR
Institute of Geophysics, China Earthquake Administration, Beijing, 100081, China
Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, 430072, China
Ruilin Lin
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100190, China
Xiaojing Sun
International Institute for Interdisciplinary and Frontiers, Beihang University, Beijing, China
Shengyang Huang
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100190, China
Yatong Cui
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Jinlei Li
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100083, China
Hengxin Lu
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, 100085, China
Xuhui Shen
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190, China
Key Laboratory of Solar Activity and Space Weather, National Space Science Center, CAS, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100190, China
Related authors
No articles found.
Jingyuan Feng, Wei Xu, Xudong Gu, Binbin Ni, Shiwei Wang, Bin Li, Ze-Jun Hu, Fang He, Xiang-Cai Chen, and Hong-Qiao Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3338, https://doi.org/10.5194/egusphere-2025-3338, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
With the rapid growth of space exploration, rocket launches have become a significant source of ionospheric disturbances. In this study, we reported the perturbations in Very Low Frequency signals triggered by rocket launches. These perturbations exhibited two-stage structure, with a period of ~3–7 minutes, matching shock acoustic waves induced by rocket launches. Our findings provide a new method to study human impacts on near-Earth space and improving our understanding of the lower ionosphere.
Jianping Huang, Junjie Song, Zhong Li, Wenjing Li, Hengxin Lu, Xingsu Li, Yumeng Huo, and Ruiqi Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1013, https://doi.org/10.5194/egusphere-2025-1013, 2025
Short summary
Short summary
In this paper, we propose a new method for identifying anomalous electromagnetic phenomena in the ionosphere before and after earthquakes. This research contributes to the ongoing efforts in earthquake prediction. By analyzing satellite data from CSES-01 and applying a novel decomposition technique, we identify significant electric field disturbances prior to the May 11, 2023, Tonga Islands earthquake. We believe this work contributes to the broader understanding of seismic precursors.
Shufan Zhao, XuHui Shen, Zeren Zhima, and Chen Zhou
Ann. Geophys., 38, 969–981, https://doi.org/10.5194/angeo-38-969-2020, https://doi.org/10.5194/angeo-38-969-2020, 2020
Short summary
Short summary
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu earthquake by analyzing the signal-to-noise ratio (SNR) and using the full-wave model to illustrate a possible mechanism for how the anomalies occurred. The results show that very low-frequency (VLF) radio wave SNR in the ionosphere decreased before the Yushu earthquake. The full-wave simulation results confirm that electron density variation in the lower ionosphere will affect VLF radio signal SNR.
Cited articles
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J. M., Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International Geomagnetic Reference Field: the thirteenth generation, Earth Planets Space, 73, 49, https://doi.org/10.1186/s40623-020-01288-x, 2021a.
Alken, P., Thébault, E., Beggan, C. D., Aubert, J., Baerenzung, J., Brown, W. J., Califf, S., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Hammer, M. D., Holschneider, M., Hulot, G., Korte, M., Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Nair, M., Olsen, N., Ropp, G., Rother, M., Schnepf, N. R., Stolle, C., Toh, H., Vervelidou, F., Vigneron, P., and Wardinski, I.: Evaluation of candidate models for the 13th generation International Geomagnetic Reference Field, Earth Planets Space, 73, 48, https://doi.org/10.1186/s40623-020-01281-4, 2021b.
Anderson, P. C., Rich, F. J., and Borisov, S.: Mapping the South Atlantic Anomaly continuously over 27 years, J. Atmos. Sol.-Terr. Phy., 177, 237–246, https://doi.org/10.1016/j.jastp.2018.03.015, 2018.
Andersson, M. E., Verronen, P. T., Wang, S., Rodger, C. J., Clilverd, M. A., and Carson, B. R.: Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004–2009, J. Geophys. Res.-Atmos., 117, D09304, https://doi.org/10.1029/2011JD017246, 2012.
Andersson, M. E., Verronen, P. T., Rodger, C. J., Clilverd, M. A., and Seppälä, A.: Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone, Nat. Commun., 5, 5197, https://doi.org/10.1038/ncomms6197, 2014.
Arsenović, P., Rozanov, E. V., Stenke, A., Funke, B., Wissing, J. M., Mursula, K., Tummon, F., and Peter, T.: The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate, J. Atmos. Sol.-Terr. Phy., 149, 180–190, 2016.
Baker, D. N., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N., and Verronen, P. T.: Space Weather Effects in the Earth's Radiation Belts, Space Sci. Rev., 214, 17, https://doi.org/10.1007/s11214-017-0452-7, 2017.
Blake, J. B., Looper, M. D., Baker, D. N., Nakamura, R., Klecker, B., and Hovestadt, D.: New high temporal and spatial resolution measurements by Sampex of the precipitation of relativistic electrons, Adv. Space Res., 18, 171–186, 1996.
Burns, C. J., Turunen, E., Matveinen, H., Ranta, H., and Hargreaves, J. K.: Chemical modelling of the quiet summer D- and E-regions using EISCAT electron density profiles, J. Atmos. Terr. Phys., 53, 115–134, https://doi.org/10.1016/0021-9169(91)90026-4, 1991.
Cai, H., Zhao, S., Liao, L., Shen, X., and Lu, H.: Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite, Atmosphere-Basel, 14, 1816, https://doi.org/10.3390/atmos14121816, 2023.
Chen, Z., Xie, T., Li, H., Ouyang, Z., and Deng, X.: The Global Variation of Low Ionosphere Under Action of Energetic Electron Precipitation, J. Geophys. Res.-Space, 128, e2023JA031930, https://doi.org/10.1029/2023JA031930, 2023.
Cheng, W., Xu, W., Gu, X., Wang, S., Wang, Q., Ni, B., Lu, Z., Xiao, B., and Meng, X.: A Comparative Study of VLF Transmitter Signal Measurements and Simulations during Two Solar Eclipse Events, Remote Sens.-Basel, 15, 3025, https://doi.org/10.3390/rs15123025, 2023.
Cummer, S. A., Bell, T. F., Inan, U. S., and Chenette, D. L.: VLF remote sensing of high-energy auroral particle precipitation, J. Geophys. Res.-Space, 102, 7477–7484, https://doi.org/10.1029/96JA03721, 1997.
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr., M., Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B., Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas, F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities, Earth and Space Science, 8, e2020EA001321, https://doi.org/10.1029/2020EA001321, 2021.
Fang, X., Randall, C. E., Lummerzheim, D., Solomon, S. C., Mills, M. J., Marsh, D. R., Jackman, C. H., Wang, W., and Lu, G.: Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons, J. Geophys. Res.-Space, 113, A09311, https://doi.org/10.1029/2008JA013384, 2008.
Fang, X., Randall, C. E., Lummerzheim, D., Wang, W., Lu, G., Solomon, S. C., and Frahm, R. A.: Parameterization of monoenergetic electron impact ionization, Geophys. Res. Lett., 37, L22106, https://doi.org/10.1029/2010GL045406, 2010.
Friedrich, M., Pock, C., and Torkar, K.: FIRI-2018, an Updated Empirical Model of the Lower Ionosphere, J. Geophys. Res.-Space, 123, 6737–6751, https://doi.org/10.1029/2018JA025437, 2018.
Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., and Wissing, J. M.: Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys., 11, 9089–9139, https://doi.org/10.5194/acp-11-9089-2011, 2011.
Fytterer, T., Mlynczak, M. G., Nieder, H., Pérot, K., Sinnhuber, M., Stiller, G., and Urban, J.: Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data, Atmos. Chem. Phys., 15, 3327–3338, https://doi.org/10.5194/acp-15-3327-2015, 2015.
Gasdia, F. and Marshall, R. A.: A Method for Imaging Energetic Particle Precipitation With Subionospheric VLF Signals, Earth and Space Science, 10, e2022EA002460, https://doi.org/10.1029/2022EA002460, 2023.
Glukhov, V. S., Pasko, V. P., and Inan, U. S.: Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts, J. Geophys. Res.-Space, 97, 16971–16979, https://doi.org/10.1029/92JA01596, 1992.
Gołkowski, M., Sarker, S. R., Renick, C., Moore, R. C., Cohen, M. B., Kułak, A., Młynarczyk, J., and Kubisz, J.: Ionospheric D Region Remote Sensing Using ELF Sferic Group Velocity, Geophys. Res. Lett., 45, 12739–12748, https://doi.org/10.1029/2018GL080108, 2018.
Huang, J., Lei, J., Li, S., Zeren, Z., Li, C., Zhu, X., and Yu, W.: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469–478, 2018.
Jackman, C. H., McPeters, R. D., Labow, G. J., Fleming, E. L., Praderas, C. J., and Russell, J. M.: Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event, Geophys. Res. Lett., 28, 2883–2886, https://doi.org/10.1029/2001GL013221, 2001.
Kaeppler, S.: srkaeppler/pyGPI5, GitHub [code], https://github.com/srkaeppler/pyGPI5.git (last access: 13 June 2025), 2025.
Kaeppler, S. R., Marshall, R., Sanchez, E. R., Juarez Madera, D. H., Troyer, R., and Jaynes, A. N.: pyGPI5: A python D- and E-region chemistry and ionization model, Frontiers in Astronomy and Space Sciences, 9, 1028042, https://doi.org/10.3389/fspas.2022.1028042, 2022.
Kataoka, R., Asaoka, Y., Torii, S., Nakahira, S., Ueno, H., Miyake, S., Miyoshi, Y., Kurita, S., Shoji, M., Kasahara, Y., Ozaki, M., Matsuda, S., Matsuoka, A., Kasaba, Y., Shinohara, I., Hosokawa, K., Uchida, H. A., Murase, K., and Tanaka, Y.: Plasma Waves Causing Relativistic Electron Precipitation Events at International Space Station: Lessons From Conjunction Observations With Arase Satellite, J. Geophys. Res.-Space, 125, e2020JA027875, https://doi.org/10.1029/2020JA027875, 2020.
Kil, H. and Heelis, R. A.: Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res.-Space, 103, 407–417, https://doi.org/10.1029/97JA02698, 1998.
Krause, L. H.: The interaction of relativistic electron beams with the near-Earth space environment (PhD thesis), University of Michigan, 1998.
Kulkarni, P., Inan, U. S., Bell, T. F., and Bortnik, J.: Precipitation signatures of ground-based VLF transmitters, J. Geophys. Res.-Space, 113, A07214, https://doi.org/10.1029/2007JA012569, 2008.
Kumar, A. and Kumar, S.: Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24, Earth Planets Space, 70, 29, https://doi.org/10.1186/s40623-018-0794-8, 2018.
Li, W., Shen, X.-C., Ma, Q., Capannolo, L., Shi, R., Redmon, R. J., Rodriguez, J. V., Reeves, G. D., Kletzing, C. A., Kurth, W. S., and Hospodarsky, G. B.: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss, Geophys. Res. Lett., 46, 3615–3624, https://doi.org/10.1029/2019GL082095, 2019.
Ma, Q., Connor, H. K., Zhang, X.-J., Li, W., Shen, X.-C., Gillespie, D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Claudepierre, S. G., Reeves, G. D., and Spence, H. E.: Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth's Magnetosphere, Geophys. Res. Lett., 47, e2020GL088798, https://doi.org/10.1029/2020GL088798, 2020.
Ma, Q., Li, W., Zhang, X.-J., Bortnik, J., Shen, X.-C., Connor, H. K., Boyd, A. J., Kurth, W. S., Hospodarsky, G. B., Claudepierre, S. G., Reeves, G. D., and Spence, H. E.: Global Survey of Electron Precipitation due to Hiss Waves in the Earth's Plasmasphere and Plumes, J. Geophys. Res.-Space, 126, e2021JA029644, https://doi.org/10.1029/2021JA029644, 2021.
Ma, Z., Zhao, S., Liao, L., Shen, X., and Lu, H.: Study of factors influencing the occurrence rate of 60 Hz power line radiation in the topside ionosphere: A systematic survey using the CSES satellite, Sci. China Technol. Sc., 67, 1879–1892, https://doi.org/10.1007/s11431-023-2582-8, 2024.
Marshall, R. A. and Cully, C. M.: Chapter 7 – Atmospheric effects and signatures of high-energy electron precipitation, in: The Dynamic Loss of Earth's Radiation Belts, edited by: Jaynes, A. N., and Usanova, M. E., Elsevier, 199–255, https://doi.org/10.1016/B978-0-12-813371-2.00007-X, 2020.
Marshall, R. A., Xu, W., Kero, A., Kabirzadeh, R., and Sanchez, E.: Atmospheric Effects of a Relativistic Electron Beam Injected From Above: Chemistry, Electrodynamics, and Radio Scattering, Frontiers in Astronomy and Space Sciences, 6, 00006, https://doi.org/10.3389/fspas.2019.00006, 2019.
Martinez-Calderon, C., Shiokawa, K., Miyoshi, Y., Ozaki, M., Schofield, I., and Connors, M.: Polarization analysis of VLF/ELF waves observed at subauroral latitudes during the VLF-CHAIN campaign, Earth Planets Space, 67, 21, https://doi.org/10.1186/s40623-014-0178-7, 2015.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
Moran, P. A. P.: Notes on Continuous Stochastic Phenomena, Biometrika, 37, 17–23, https://doi.org/10.2307/2332142, 1950.
Nakamura, R., Baker, D. N., Blake, J. B., Kanekal, S. G., Klecker, B., and Hovestadt, D.: Relativistic electron precipitation enhancements near the outer edge of the radiation belt, Geophys. Res. Lett., 22, 1129–1132, 1995.
Pettit, J., Elloitt, S., Randall, C. E., Halford, A. J., Jaynes, A. J., and Garcia-Sage, K.: Investigation of the drivers and atmospheric impacts of energetic electron precipitation, Frontiers in Astronomy and Space Sciences, 1162564, https://doi.org/10.3389/fspas.2023.1162564, 2023.
Ramo, S., Whinnery, J. R., and Van Duzer, T.: Fields and Waves in Communication Electronics, Wiley, ISBN 978-0-471-58551-0, 1994.
Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu, M., Sioris, C., Brohede, S., Haley, C. S., Gordley, L. L., Zawodny, J. M., and Russell III, J. M.: Stratospheric effects of energetic particle precipitation in 2003–2004, Geophys. Res. Lett., 32, L05802, https://doi.org/10.1029/2004GL022003, 2005.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., and Russell III, J. M.: Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005, J. Geophys. Res.-Atmos., 112, D08308, https://doi.org/10.1029/2006JD007696, 2007.
Ratcliffe, J. A.: The Magneto Ionic Theory and its Applications to the Ionosphere: A Monograph, Cambridge University Press, https://doi.org/10.1111/j.1365-246X.1959.tb05798.x, 1959.
Reeves, G. D., Friedel, R. H. W., Larsen, B. A., Skoug, R. M., Funsten, H. O., Claudepierre, S. G., Fennell, J. F., Turner, D. L., Denton, M. H., Spence, H. E., Blake, J. B., and Baker, D. N.: Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions, J. Geophys. Res.-Space, 121, 397–412, https://doi.org/10.1002/2015JA021569, 2016.
Renkwitz, T., Sivakandan, M., Jaen, J., and Singer, W.: Ground-based noontime D-region electron density climatology over northern Norway, Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023, 2023.
Rozanov, E., Calisto, M., Egorova, T., Peter, T., and Schmutz, W.: Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate, Surv. Geophys., 33, 483–501, https://doi.org/10.1007/s10712-012-9192-0, 2012.
Seppälä, A., Matthes, K., Randall, C. E., and Mironova, I. A.: What is the solar influence on climate? Overview of activities during CAWSES-II, Progress in Earth and Planetary Science, 1, 24, https://doi.org/10.1186/s40645-014-0024-3, 2014.
Seppälä, A., Clilverd, M. A., Beharrell, M. J., Rodger, C. J., Verronen, P. T., Andersson, M. E., and Newnham, D. A.: Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry, Geophys. Res. Lett., 42, 8172–8176, https://doi.org/10.1002/2015GL065523, 2015.
Sheese, P. E., McDade, I. C., Gattinger, R. L., and Llewellyn, E. J.: Atomic oxygen densities retrieved from Optical Spectrograph and Infrared Imaging System observations of O2 A-band airglow emission in the mesosphere and lower thermosphere, J. Geophys. Res.-Atmos., 116, D01303, https://doi.org/10.1029/2010JD014640, 2011.
Shen, X., Zhang, X., Yuan, S., Wang, L., Cao, J., Huang, J., Zhu, X., Piergiorgio, P., and Dai, J.: The state-of-the-art of the China Seismo-Electromagnetic Satellite mission, Sci. China Technol. Sc., 61, 634–642, https://doi.org/10.1007/s11431-018-9242-0, 2018.
Sinnhuber, M., Nieder, H., and Wieters, N.: Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere, Surv. Geophys., 33, 1281–1334, https://doi.org/10.1007/s10712-012-9201-3, 2012.
Su, S.-Y., Liu, C. H., Ho, H. H., and Chao, C. K.: Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res.-Space, 111, A06305, https://doi.org/10.1029/2005JA011330, 2006.
The China Seismo-Electromagnetic Satellite Mission Team: CSES satellite data, https://leos.ac.cn (last access: 18 August 2025), 2025.
Thorne, R. M.: The importance of energetic particle precipitation on the chemical composition of the middle atmosphere, Pure Appl. Geophys., 118, 128–151, https://doi.org/10.1007/BF01586448, 1980.
Toledo-Redondo, S., Parrot, M., and Salinas, A.: Variation of the first cut-off frequency of the Earth-ionosphere waveguide observed by DEMETER, J. Geophys. Res.-Space, 117, A04321, https://doi.org/10.1029/2011JA017400, 2012.
Verronen, P. T., Rodger, C. J., Clilverd, M. A., and Wang, S.: First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts, J. Geophys. Res.-Atmos., 116, D07307, https://doi.org/10.1029/2010JD014965, 2011a.
Verronen, P. T., Santee, M. L., Manney, G. L., Lehmann, R., Salmi, S.-M., and Seppälä, A.: Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events, J. Geophys. Res.-Atmos., 116, D17301, https://doi.org/10.1029/2011JD016075, 2011b.
Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovács, T., and Plane, J. M. C.: WACCM-D – Whole Atmosphere Community Climate Model with D-region ion chemistry, J. Adv. Model. Earth Sy., 8, 954–975, https://doi.org/10.1002/2015MS000592, 2016.
Wait, J. R., and K. P. Spies.: Characteristics of Earth: Ionosphere Waveguide for VLF Radio Waves, National Bureau of Standards, Boulder, Colo., https://doi.org/10.6028/NBS.TN.300, 1964.
Xu, W. and Marshall, R. A.: Characteristics of Energetic Electron Precipitation Estimated from Simulated Bremsstrahlung X-ray Distributions, J. Geophys. Res.-Space, 124, 2831–2843, https://doi.org/10.1029/2018JA026273, 2019.
Xu, W., Marshall, R. A., Tyssøy, H. N., and Fang, X.: A Generalized Method for Calculating Atmospheric Ionization by Energetic Electron Precipitation, J. Geophys. Res.-Space, 125, e2020JA028482, https://doi.org/10.1029/2020JA028482, 2020.
Yang, M., Huang, J., Zhang, X., Shen, X., Wang, L., Zeren, Z., Qian, G., and Zhai, L.: Analysis on dynamic background field of ionosphere ELF/VLF electric field in Northeast Asia, Progress in Geophysics, 33, 2285–2294, 2018.
Yu, X., Yuan, Z., Yu, J., Wang, D., Deng, D., and Funsten, H. O.: Diffuse auroral precipitation driven by lower-band chorus second harmonics, Nat. Commun., 14, 438, https://doi.org/10.1038/s41467-023-36095-x, 2023.
Zhao, S., Zhou, C., Shen, X., and Zhima, Z.: Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation, J. Geophys. Res.-Space, 124, 4697–4709, https://doi.org/10.1029/2019JA026593, 2019.
Zhao, S., Liao, L., Shen, X., and Lu, H.: Solar Cycle Variation of Radiated Electric Field and Ionospheric Reflection Height Over NWC Transmitter During 2005–2009: DEMETER Spacecraft Observations and Simulations, J. Geophys. Res.-Space, 129, e2023JA032282, https://doi.org/10.1029/2023JA032282, 2024.
Short summary
Energetic electron precipitation (EEP) from the magnetosphere into the Earth's atmosphere can significantly alter the electron density in the D-region ionosphere, impacting its reflective properties and the effectiveness of low-frequency radio wave transmission. A comprehensive understanding of the influence of EEP on the D-region ionosphere can enhance predictive models of ionospheric behavior and mitigate the impacts of space weather.
Energetic electron precipitation (EEP) from the magnetosphere into the Earth's atmosphere can...
Altmetrics
Final-revised paper
Preprint