Articles | Volume 25, issue 7
https://doi.org/10.5194/acp-25-3961-2025
https://doi.org/10.5194/acp-25-3961-2025
Research article
 | 
09 Apr 2025
Research article |  | 09 Apr 2025

Stratospheric circulation response to large Northern Hemisphere high-latitude volcanic eruptions in a global climate model

Hera Guðlaugsdóttir, Yannick Peings, Davide Zanchettin, and Gudrun Magnusdottir

Related authors

Drivers of and uncertainty in Amazon carbon sink long-term and interannual variability in CMIP6 models
Matteo Mastropierro, Daniele Peano, and Davide Zanchettin
Biogeosciences, 22, 5231–5246, https://doi.org/10.5194/bg-22-5231-2025,https://doi.org/10.5194/bg-22-5231-2025, 2025
Short summary
The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022,https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022,https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Sea-level rise in Venice: historic and future trends (review article)
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021,https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article)
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021,https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary

Cited articles

Azoulay, A., Schmidt, H., and Timmreck, C.: The Arctic polar vortex response to volcanic forcing of different strengths, J. Geophys. Res.-Atmos., 126, e2020JD034450, https://doi.org/10.1029/2020JD034450, 2021. 
Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., and Karlsdóttir, S.: Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model, Front. Earth Sci., 6, 196, https://doi.org/10.3389/feart.2018.00196, 2018. 
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty, Geophys. Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587, 2016a. 
Bittner, M., Timmreck, C., Schmidt, H., Toohey, M., and Krüger, K.: The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions, J. Geophys. Res.-Atmos., 121, 5281–5297, https://doi.org/10.1002/2015JD024603, 2016b. 
Brayshaw, D. J., Hoskins, B., and Blackburn, M.: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography, J. Atmos. Sci., 66, 2539–2558, https://doi.org/10.1175/2009JAS3078.1, 2009. 
Download
Short summary
Here we use an Earth system model to simulate a long-lasting volcanic eruption at 65° N and investigate its impact on the stratospheric circulation. We show a polar vortex strengthening in winter 1, followed by a weakening in winters 2–3 due to surface cooling, where ocean–atmosphere interactions play a major role in the detected response. This weakening appears to trigger sudden stratospheric warming events that can cause severe cold spells throughout the Northern Hemisphere.  
Share
Altmetrics
Final-revised paper
Preprint